Deep Learning Prediction of Polycyclic Aromatic Hydrocarbons in the High Arctic

环境科学 北极的 污染物 大气科学 气象学 海洋学 化学 地质学 地理 有机化学
作者
Yuan Zhao,Li Wang,Jinmu Luo,Tao Huang,Shu Tao,Junfeng Liu,Yong Yu,Yufei Huang,Xinrui Liu,Jianmin Ma
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:53 (22): 13238-13245 被引量:43
标识
DOI:10.1021/acs.est.9b05000
摘要

Given the lack of understanding of the complex physiochemical and environmental processes of persistent organic pollutants (POPs) in the Arctic and around the globe, atmospheric models often yield large errors in the predicted atmospheric concentrations of POPs. Here, we developed a recurrent neural network (RNN) method based on nonparametric deep learning algorithms. The RNN model was implemented to predict monthly air concentrations of polycyclic aromatic hydrocarbons (PAHs) at the high Arctic monitoring station Alert. To train the RNN system, we used MODIS satellite remotely sensed forest fire data, air emissions, meteorological data, sea ice cover area, and sampled PAH concentration data from 1996 to 2012. The system was applied to forecast monthly PAH concentrations from 2012 to 2014 at the Alert station. The results were compared with monitored PAHs and an atmospheric transport model (CanMETOP) for POPs. We show that the RNN significantly improved PHE and BaP predictions from 2012 to 2014 by 62.5 and 91.1%, respectively, compared to CanMETOP predictions. The sensitivity analysis using the Shapley value reveals that air emissions determined the magnitude of PAH levels in the high Arctic, whereas forest fires played a significant role in the changes in PAH concentrations in the high Arctic, followed by air temperature and meridional wind fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao双月发布了新的文献求助10
刚刚
津津完成签到,获得积分10
1秒前
眼镜胖子发布了新的文献求助10
2秒前
3秒前
QQ完成签到,获得积分10
3秒前
桃子完成签到 ,获得积分10
4秒前
无私菲鹰完成签到,获得积分20
4秒前
5秒前
麦子发布了新的文献求助10
5秒前
xiao双月完成签到,获得积分10
7秒前
烂漫明轩完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
8秒前
爆米花应助柠m采纳,获得10
9秒前
大青山发布了新的文献求助10
9秒前
xiaoyi完成签到,获得积分10
10秒前
www发布了新的文献求助10
11秒前
13秒前
苗条一兰完成签到,获得积分10
13秒前
Akim应助眼镜胖子采纳,获得10
14秒前
耀阳发布了新的文献求助10
14秒前
ztt发布了新的文献求助10
15秒前
共享精神应助奔波儿灞采纳,获得10
16秒前
17秒前
19秒前
非洲大象完成签到,获得积分10
19秒前
小狗发布了新的文献求助10
20秒前
易达发布了新的文献求助30
21秒前
苹果从菡完成签到,获得积分10
21秒前
彭于晏应助白菜也挺贵采纳,获得10
21秒前
顾矜应助难过千易采纳,获得10
22秒前
23秒前
24秒前
25秒前
柠m发布了新的文献求助10
25秒前
善学以致用应助麦子采纳,获得10
26秒前
26秒前
cholate完成签到,获得积分10
26秒前
26秒前
神猪无敌完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070