生物
细胞生物学
信号转导
受体酪氨酸激酶
受体
基因亚型
遗传学
基因
作者
Cristina Pierro,Simon J. Cook,Thomas Foets,Martin D. Bootman,H. Llewelyn Roderick
摘要
The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine kinases that controls multiple cell fate-determining signalling pathways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca2+ signalling pathways control some overlapping functions with Ras, and altered Ca2+ signalling pathways are emerging as important players in oncogenic transformation, how Ca2+ signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca2+ signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca2+ release from intracellular stores is enhanced by loss of K-RasG13D through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca2+ into mitochondria and sensitivity to apoptosis was enhanced as a result of K-RasG13D loss. These results suggest that suppression of Ca2+ signalling is a common response to naturally occurring levels of K-RasG13D that contributes to a survival advantage during oncogenic transformation.
科研通智能强力驱动
Strongly Powered by AbleSci AI