Predicting Depression among Patients with Diabetes Using Longitudinal Data

萧条(经济学) 医学 纵向数据 糖尿病 纵向研究 内科学 人口学 内分泌学 病理 宏观经济学 社会学 经济
作者
Haomiao Jin,Shinyi Wu,Irene Vidyanti,Paul Di Capua,Brian Wu
出处
期刊:Methods of Information in Medicine [Thieme Medical Publishers (Germany)]
卷期号:54 (06): 553-559 被引量:35
标识
DOI:10.3414/me14-02-0009
摘要

Summary Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Big Data and Analytics in Healthcare”. Background: Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. Objectives: This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Methods: Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Results: Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. Conclusions: The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油加油完成签到 ,获得积分10
刚刚
xxxx完成签到,获得积分10
刚刚
闪闪的夜阑完成签到,获得积分10
2秒前
A溶大美噶完成签到,获得积分10
4秒前
iuhgnor完成签到,获得积分10
5秒前
6秒前
毕个业完成签到 ,获得积分10
7秒前
chaotianjiao完成签到 ,获得积分10
7秒前
Seldomyg完成签到 ,获得积分10
8秒前
我爱科研完成签到 ,获得积分10
9秒前
清秀凡霜完成签到,获得积分10
10秒前
就晚安喽发布了新的文献求助10
10秒前
HCLonely完成签到,获得积分0
10秒前
Salamenda完成签到,获得积分10
11秒前
strama完成签到,获得积分10
11秒前
小曲完成签到,获得积分10
12秒前
genomed完成签到,获得积分0
13秒前
husky完成签到 ,获得积分10
14秒前
凤凰之玉完成签到 ,获得积分10
14秒前
YANA完成签到,获得积分10
15秒前
养乐多完成签到,获得积分10
15秒前
zhouyan完成签到,获得积分10
15秒前
15秒前
soory完成签到,获得积分10
18秒前
王照盼完成签到 ,获得积分10
19秒前
搜集达人应助科研通管家采纳,获得10
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
凡人修仙完成签到,获得积分10
20秒前
会飞的小猪完成签到,获得积分10
20秒前
Disci发布了新的文献求助10
20秒前
21秒前
勤劳绿毛龟完成签到,获得积分10
21秒前
Bao完成签到 ,获得积分10
21秒前
杭紫雪完成签到,获得积分10
21秒前
炸鸡完成签到 ,获得积分10
22秒前
小二郎应助我喜欢下雪采纳,获得10
22秒前
寒冷的奇异果完成签到,获得积分10
24秒前
jidou1011发布了新的文献求助10
26秒前
临床医学研究中心完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686984
求助须知:如何正确求助?哪些是违规求助? 3237272
关于积分的说明 9829991
捐赠科研通 2949177
什么是DOI,文献DOI怎么找? 1617263
邀请新用户注册赠送积分活动 764208
科研通“疑难数据库(出版商)”最低求助积分说明 738360