Predicting Depression among Patients with Diabetes Using Longitudinal Data

萧条(经济学) 医学 纵向数据 糖尿病 纵向研究 内科学 人口学 内分泌学 病理 社会学 经济 宏观经济学
作者
Haomiao Jin,Shinyi Wu,Irene Vidyanti,Paul Di Capua,Brian Wu
出处
期刊:Methods of Information in Medicine [Thieme Medical Publishers (Germany)]
卷期号:54 (06): 553-559 被引量:35
标识
DOI:10.3414/me14-02-0009
摘要

Summary Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Big Data and Analytics in Healthcare”. Background: Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. Objectives: This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Methods: Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Results: Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. Conclusions: The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
xz完成签到,获得积分10
3秒前
WQY发布了新的文献求助10
3秒前
拾陆发布了新的文献求助10
4秒前
敏家完成签到,获得积分10
6秒前
JamesPei应助TTTTT采纳,获得10
6秒前
6秒前
RYXL发布了新的文献求助10
7秒前
共享精神应助山与采纳,获得10
7秒前
小学渣完成签到,获得积分10
7秒前
健壮涵柳发布了新的文献求助10
8秒前
懒羊羊发布了新的文献求助50
11秒前
平常紊完成签到 ,获得积分10
12秒前
轩轩轩轩完成签到 ,获得积分10
12秒前
阿达发布了新的文献求助10
13秒前
17835152738完成签到,获得积分10
13秒前
14秒前
zwj发布了新的文献求助10
15秒前
16秒前
肖婷婷完成签到,获得积分20
16秒前
yiyi完成签到,获得积分10
16秒前
17秒前
17秒前
科研通AI6应助peng采纳,获得10
17秒前
18秒前
18秒前
陈晨发布了新的文献求助10
19秒前
hugoyyy发布了新的文献求助10
21秒前
lll完成签到 ,获得积分10
22秒前
22秒前
WQY完成签到,获得积分10
22秒前
汉堡包应助阿达采纳,获得10
23秒前
Vency应助水水加油采纳,获得20
24秒前
小礼品发布了新的文献求助10
24秒前
24秒前
花花发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818