亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Depression among Patients with Diabetes Using Longitudinal Data

萧条(经济学) 医学 纵向数据 糖尿病 纵向研究 内科学 人口学 内分泌学 病理 社会学 经济 宏观经济学
作者
Haomiao Jin,Shinyi Wu,Irene Vidyanti,Paul Di Capua,Brian Wu
出处
期刊:Methods of Information in Medicine [Thieme (Methods of Information in Medicine)]
卷期号:54 (06): 553-559 被引量:35
标识
DOI:10.3414/me14-02-0009
摘要

Summary Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Big Data and Analytics in Healthcare”. Background: Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. Objectives: This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Methods: Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Results: Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. Conclusions: The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助鲸鱼吻着浪采纳,获得10
16秒前
鲸鱼吻着浪给鲸鱼吻着浪的求助进行了留言
1分钟前
1分钟前
K.I.D发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Perion完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
酷炫的红牛完成签到,获得积分10
3分钟前
3分钟前
3分钟前
hmhu发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
体育爱好者完成签到,获得积分10
4分钟前
可久斯基完成签到 ,获得积分10
4分钟前
cai发布了新的文献求助30
4分钟前
caca完成签到,获得积分10
5分钟前
yamo完成签到 ,获得积分10
5分钟前
润清完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
伟大人物完成签到 ,获得积分10
6分钟前
try完成签到 ,获得积分10
6分钟前
6分钟前
时流完成签到,获得积分10
6分钟前
6分钟前
supermaltose发布了新的文献求助30
7分钟前
supermaltose完成签到,获得积分10
7分钟前
春夏爱科研完成签到,获得积分10
7分钟前
时流驳回了情怀应助
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
fuueer完成签到 ,获得积分10
8分钟前
hhh完成签到,获得积分10
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238958
求助须知:如何正确求助?哪些是违规求助? 2884275
关于积分的说明 8232854
捐赠科研通 2552320
什么是DOI,文献DOI怎么找? 1380640
科研通“疑难数据库(出版商)”最低求助积分说明 649068
邀请新用户注册赠送积分活动 624764