萧条(经济学)
医学
纵向数据
糖尿病
纵向研究
内科学
人口学
内分泌学
病理
社会学
经济
宏观经济学
作者
Haomiao Jin,Shinyi Wu,Irene Vidyanti,Paul Di Capua,Brian Wu
摘要
Summary Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Big Data and Analytics in Healthcare”. Background: Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. Objectives: This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Methods: Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Results: Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. Conclusions: The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.
科研通智能强力驱动
Strongly Powered by AbleSci AI