Fatty Acid and Lipid Transport in Plant Cells

生物 脂肪酸 生物化学 植物细胞 植物 基因
作者
Nannan Li,Changcheng Xu,Yonghua Li‐Beisson,Katrin Philippar
出处
期刊:Trends in Plant Science [Elsevier]
卷期号:21 (2): 145-158 被引量:309
标识
DOI:10.1016/j.tplants.2015.10.011
摘要

FAX1, a novel membrane protein in the inner envelope of chloroplasts, mediates FA export. The discovery and analysis of membrane transporters allows future development of models for transport mechanisms of lipophilic compounds. The flow of FAs from plastids to their final cellular destination in lipid molecules is controlled by membrane-intrinsic and membrane-attached proteins. Plant membrane transporters for FAs and lipid derivatives represent essential components in growth, development, and plant performance. Fatty acids (FAs) and lipids are essential — not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae – in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii – are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. Fatty acids (FAs) and lipids are essential — not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae – in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii – are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. small (10 kDa) conserved ACBPs are implicated in the storage and intracellular distribution of acyl-CoA esters or lipids in eukaryotes. In Arabidopsis, six ACBP proteins with acyl-CoA binding domains exist, and three of them – ACBP4, 5, and 6 – are localized in the cytosol. Only At-ACBP6 represents a 'classical' 10 kDa ACBP, whereas At-ACBP1–3 are about 38–39 kDa, and At-ACBP4 and 5, with additional kelch motif domains, are about 71–73 kDa in size. Thus, ACBP1–5 represent plant-specific proteins. Whereas ACBP3 is targeted to the extracellular space, ACBP1 and 2 contain ankyrin repeats and have a transmembrane domain that attaches them to the ER and plasma membrane. plant ABC transporter ATPases constitute a large membrane-protein family with at least 130 members in Arabidopsis and belong to the ABC Superfamily 3.A.1 (Transporter Classification Database, TCDB: www.tcdb.org). The generalized transport reactions for ABC-type uptake and efflux systems are: (i) solute (out) + ATP → solute (in) + ADP + Pi; and (ii) substrate (in) + ATP → substrate (out) + ADP + Pi, respectively. An ABC transporter complex consists of two transmembrane and two nucleotide-binding domains, which can either be assembled by one or two polypeptide chains of the full- and half-size ABC transporters, respectively. Prokaryotic-type ABC transporter complexes are assembled by four separate subunits plus two or more additional substrate-binding proteins (e.g., the TGD1–3 complex in the chloroplast IE). Proteins in the A, D, and G subfamilies in animals and plants are predominantly involved in transport of lipophilic molecules. starting with LC (C16–18) FAs synthesized in plastids, the eukaryotic pathway of lipid synthesis in plants occurs at the ER where elongation, acyl editing, and lipid assembly take place. Because the ER sn2-acyltransferase has high specificity for C18 FAs, eukaryotic DAG backbones in plant glycerolipids mainly contain C18 acyl chains at the sn2 position. Owing to their endosymbiotic origin, plastids have retained the so-called prokaryotic lipid synthesis pathway, mainly producing plastid-intrinsic galactolipids and PG. The plastid sn2-acyltransferase has an exclusive preference for C16 FAs, thus 'prokaryotic' plastid-produced DAG backbones always have C16 acyl chains at sn2, thereby enabling discrimination of lipid origin. Note that the sn1-acyltransferases in both compartments prefer C18 FAs. LACS enzymes are plant long-chain fatty acid:CoA ligases (AMP-forming) and belong to the IUBMB enzyme class EC 6.2.1.3. LACS or FACS (fatty acid CoA synthetase) are ubiquitously present in pro- and eukaryotic organisms and catalyze the reaction: ATP + (long-chain) fatty acid + CoA → AMP + diphosphate + acyl-CoA (KEGG database: www.genome.jp/kegg/kegg1.html). Owing to their function in FA activation by formation of a thioester with CoA, they play an important role in the so-called process of vectorial acylation. LC FAs have an alkyl chain length of C16–18, whereas VLC FAs have 20 or more carbon atoms (C≥20). the coupling of FA transport across a lipid bilayer membrane – either passive diffusion or transmembrane flip most likely mediated by a membrane-intrinsic protein – with subsequent ATP-dependent FA activation by a LACS/FACS enzyme and delivery for metabolism. Because in this latter step thioester bounds are formed, the process is also referred to as vectorial esterification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助wangcc采纳,获得10
1秒前
shiyi发布了新的文献求助30
1秒前
英姑应助独特乘云采纳,获得10
3秒前
梦回唐朝发布了新的文献求助10
3秒前
科目三应助苹什么采纳,获得10
4秒前
羊羊羊完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
852应助才疏采纳,获得10
6秒前
桐桐应助Shen采纳,获得10
7秒前
mokesun完成签到,获得积分10
8秒前
Ava应助香菜采纳,获得10
8秒前
爆米花应助Literaturecome采纳,获得10
8秒前
9秒前
9秒前
11秒前
shiyi完成签到,获得积分10
11秒前
橙C发布了新的文献求助10
13秒前
13秒前
R沫完成签到,获得积分10
13秒前
HolmeTao完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
紧张的幻桃完成签到 ,获得积分10
16秒前
Chnious发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
耗子发布了新的文献求助10
17秒前
科研通AI2S应助循笛采纳,获得10
17秒前
18秒前
18秒前
18秒前
VIAI发布了新的文献求助10
19秒前
hu发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
科研通AI6.1应助Chnious采纳,获得10
22秒前
连糜发布了新的文献求助20
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770329
求助须知:如何正确求助?哪些是违规求助? 5584051
关于积分的说明 15423929
捐赠科研通 4903821
什么是DOI,文献DOI怎么找? 2638379
邀请新用户注册赠送积分活动 1586244
关于科研通互助平台的介绍 1541387