数学
分数布朗运动
随机微积分
布朗漂移
分数阶微积分
几何布朗运动
布朗运动
赫斯特指数
数学分析
路径积分公式
扩散过程
随机过程
鞅表示定理
斯特拉托诺维奇积分
反射布朗运动
随机积分
功能集成
随机微分方程
积分方程
黎曼积分
奇异积分
微分方程
随机偏微分方程
统计
物理
量子
量子力学
知识管理
计算机科学
创新扩散
作者
T. E. Duncan,Yaozhong Hu,B. Pasik-Duncan
标识
DOI:10.1137/s036301299834171x
摘要
In this paper a stochastic calculus is given for the fractional Brownian motions that have the Hurst parameter in (1/2, 1). A stochastic integral of Itô type is defined for a family of integrands so that the integral has zero mean and an explicit expression for the second moment. This integral uses the Wick product and a derivative in the path space. Some Itô formulae (or change of variables formulae) are given for smooth functions of a fractional Brownian motion or some processes related to a fractional Brownian motion. A stochastic integral of Stratonovich type is defined and the two types of stochastic integrals are explicitly related. A square integrable functional of a fractional Brownian motion is expressed as an infinite series of orthogonal multiple integrals.
科研通智能强力驱动
Strongly Powered by AbleSci AI