已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design of GPU Network-on-Chip for Real-Time Video Super-Resolution Reconstruction

计算机科学 查阅表格 加速 算法 并行计算 计算科学 程序设计语言
作者
Zhiyong Peng,Jiang Du,Yulong Qiao
出处
期刊:Micromachines [MDPI AG]
卷期号:14 (5): 1055-1055
标识
DOI:10.3390/mi14051055
摘要

Deep learning has a better output quality compared with traditional algorithms for video super-resolution (SR), but the network model needs large resources and has poor real-time performance. This paper focuses on solving the speed problem of SR; it achieves real-time SR by the collaborative design of a deep learning video SR algorithm and GPU parallel acceleration. An algorithm combining deep learning networks with a lookup table (LUT) is proposed for the video SR, which ensures both the SR effect and ease of GPU parallel acceleration. The computational efficiency of the GPU network-on-chip algorithm is improved to ensure real-time performance by three major GPU optimization strategies: storage access optimization, conditional branching function optimization, and threading optimization. Finally, the network-on-chip was implemented on a RTX 3090 GPU, and the validity of the algorithm was demonstrated through ablation experiments. In addition, SR performance is compared with existing classical algorithms based on standard datasets. The new algorithm was found to be more efficient than the SR-LUT algorithm. The average PSNR was 0.61 dB higher than the SR-LUT-V algorithm and 0.24 dB higher than the SR-LUT-S algorithm. At the same time, the speed of real video SR was tested. For a real video with a resolution of 540×540, the proposed GPU network-on-chip achieved a speed of 42 FPS. The new method is 9.1 times faster than the original SR-LUT-S fast method, which was directly imported into the GPU for processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实觅松完成签到 ,获得积分10
刚刚
蒋12发布了新的文献求助10
刚刚
科研通AI5应助勤恳寒安采纳,获得10
2秒前
3秒前
5秒前
7秒前
方远锋完成签到,获得积分10
8秒前
光亮的树叶完成签到,获得积分10
8秒前
8秒前
Clancy完成签到,获得积分20
8秒前
8秒前
9秒前
benhzh发布了新的文献求助10
12秒前
12秒前
wyq发布了新的文献求助10
13秒前
狗贼完成签到,获得积分20
13秒前
14秒前
小马甲应助粥粥叭叭采纳,获得10
16秒前
17秒前
18秒前
CipherSage应助zj-3333333采纳,获得10
19秒前
19秒前
王大锤完成签到,获得积分10
20秒前
Leif举报KK求助涉嫌违规
21秒前
传奇3应助yuyu采纳,获得10
22秒前
24秒前
Jasper应助金水采纳,获得10
25秒前
duang完成签到,获得积分10
25秒前
26秒前
永毅完成签到 ,获得积分10
26秒前
星辰大海应助阳仔采纳,获得10
29秒前
Leif举报123求助涉嫌违规
30秒前
勤恳寒安发布了新的文献求助10
31秒前
化龙完成签到,获得积分10
34秒前
一堃发布了新的文献求助10
34秒前
36秒前
39秒前
xiaokang123应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
SciGPT应助科研通管家采纳,获得30
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574821
求助须知:如何正确求助?哪些是违规求助? 3144723
关于积分的说明 9457157
捐赠科研通 2846017
什么是DOI,文献DOI怎么找? 1564665
邀请新用户注册赠送积分活动 732433
科研通“疑难数据库(出版商)”最低求助积分说明 719110