Development of an algorithm for finding pertussis episodes in a population-based electronic health record database

电子健康档案 人口 医学 数据库 健康档案 儿科 医疗急救 计算机科学 医疗保健 环境卫生 政治学 法学
作者
Chathuri Daluwatte,Maryia Dvaretskaya,Sam Ekhtiari,Paul Hayat,Martin Montmerle,Sachin Mathur,Denis Macina
出处
期刊:Human Vaccines & Immunotherapeutics [Informa]
卷期号:19 (1) 被引量:4
标识
DOI:10.1080/21645515.2023.2209455
摘要

While tetanus-diphtheria-acellular pertussis (Tdap) vaccines for adolescents and adults were licensed in 2005 and immunization strategies proposed, the burden of pertussis in this population remains under-recognized mainly due to atypical disease presentation, undermining efforts to optimize protection through vaccination. We developed a machine learning algorithm to identify undiagnosed/misdiagnosed pertussis episodes in patients diagnosed with acute respiratory disease (ARD) using signs, diseases and symptoms from clinician notes and demographic information within electronic health-care records (Optum Humedica repository [2007-2019]). We used two patient cohorts aged ≥11 years to develop the model: a positive pertussis cohort (4,515 episodes in 4,316 patients) and a negative pertussis (ARD) cohort (4,573,445 episodes and patients), defined using ICD 9/10 codes. To improve contrast between positive pertussis and negative pertussis (ARD) episodes, only episodes with ≥7 symptoms were selected. LightGBM was used as the machine learning model for pertussis episode identification. Model validity was determined using laboratory-confirmed pertussis positive and negative cohorts. Model explainability was obtained using the Shapley additive explanations method. The predictive performance was as follows: area under the precision-recall curve, 0.24 (SD, 7 × 10-3); recall, 0.72 (SD, 4 × 10-3); precision, 0.012 (SD, 1 × 10-3); and specificity, 0.94 (SD, 7 × 10-3). The model applied to laboratory-confirmed positive and negative pertussis episodes had a specificity of 0.846. Predictive probability for pertussis increased with presence of whooping cough, whoop, and post-tussive vomiting in clinician notes, but decreased with gastrointestinal bleeding, sepsis, pulmonary symptoms, and fever. In conclusion, machine learning can help identify pertussis episodes among those diagnosed with ARD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然友菱完成签到,获得积分10
2秒前
2秒前
123456发布了新的文献求助10
2秒前
英俊的胜完成签到,获得积分10
3秒前
王黎应助眯眯眼的念寒采纳,获得30
4秒前
卷卷发布了新的文献求助10
4秒前
枯木完成签到,获得积分10
5秒前
wangz完成签到,获得积分10
5秒前
July发布了新的文献求助10
5秒前
ding应助千纸鹤采纳,获得10
8秒前
共享精神应助汕头凯奇采纳,获得10
9秒前
枯木发布了新的文献求助10
10秒前
机智的凝丝完成签到 ,获得积分10
10秒前
周大仙完成签到,获得积分10
11秒前
罗美美完成签到,获得积分20
12秒前
华仔应助芬达采纳,获得10
13秒前
ymu发布了新的文献求助10
14秒前
lzl007完成签到,获得积分10
16秒前
朴实寻真完成签到 ,获得积分10
17秒前
17秒前
18秒前
小恰完成签到,获得积分10
19秒前
XIAOMU发布了新的文献求助10
20秒前
周大仙发布了新的文献求助10
20秒前
21秒前
23秒前
Ava应助清风荷影采纳,获得30
23秒前
如愿完成签到 ,获得积分0
24秒前
123456完成签到,获得积分20
26秒前
27秒前
无花果应助纯真硬币采纳,获得10
27秒前
清寻完成签到 ,获得积分10
29秒前
孙一应助犹豫易梦采纳,获得10
33秒前
sword发布了新的文献求助10
34秒前
仲如萱完成签到,获得积分10
35秒前
July完成签到,获得积分10
35秒前
36秒前
一只饺子应助Tsuki采纳,获得30
36秒前
叶子发布了新的文献求助10
37秒前
李健应助ywjkeyantong采纳,获得10
38秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262544
求助须知:如何正确求助?哪些是违规求助? 2903181
关于积分的说明 8324328
捐赠科研通 2573216
什么是DOI,文献DOI怎么找? 1398126
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623