Classification of UAVs Utilizing Fixed Boundary Empirical Wavelet Sub-Bands of RF Fingerprints and Deep Convolutional Neural Network

计算机科学 卷积神经网络 人工智能 小波 模式识别(心理学) 特征提取 边界(拓扑) 计算机视觉 数学 数学分析
作者
Kenneth Bremnes,Rebecca J. Moen,Sreenivasa Reddy Yeduri,Rakesh Reddy Yakkati,Linga Reddy Cenkeramaddi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (21): 21248-21256 被引量:17
标识
DOI:10.1109/jsen.2022.3208518
摘要

Unmanned aerial vehicle (UAV) classification and identification have many applications in a variety of fields, including UAV tracking systems, antidrone systems, intrusion detection systems, military, space research, product delivery, agriculture, search and rescue, and internet carrier. It is challenging to identify a specific drone and/or type in critical scenarios, such as intrusion. In this article, a UAV classification method that utilizes fixed boundary empirical wavelet sub-bands of radio frequency (RF) fingerprints and a deep convolutional neural network (CNN) is proposed. In the proposed method, RF fingerprints collected from UAV receivers are decomposed into 16 fixed boundary empirical wavelet sub-band signals. Then, these sub-band signals are then fed into a lightweight deep CNN model to classify various types of UAVs. Using the proposed method, we classify a total of 15 different commercially available UAVs with an average testing accuracy of 97.25%. The proposed model is also tested with various sampling points in the signal. Furthermore, the proposed method is compared with recently reported works for classifying UAVs utilizing remote controller RF signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助扭一扭的奥利奥采纳,获得10
刚刚
研ge完成签到,获得积分10
刚刚
zzuwxj发布了新的文献求助10
刚刚
1秒前
时光完成签到,获得积分10
1秒前
英姑应助溜了溜了采纳,获得10
1秒前
毛豆应助阔达的银耳汤采纳,获得10
1秒前
2秒前
研友_38KJRZ完成签到,获得积分10
2秒前
陈石头发布了新的文献求助10
3秒前
善学以致用应助mojio采纳,获得10
3秒前
小二郎应助调皮的易巧采纳,获得10
3秒前
行走在科研的小路上完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI2S应助飞快的一曲采纳,获得10
5秒前
6秒前
6秒前
linguobin发布了新的文献求助10
6秒前
7秒前
超级萌琦完成签到,获得积分10
7秒前
大橙子完成签到,获得积分10
8秒前
完美世界应助务实的映菡采纳,获得10
8秒前
耳火完成签到,获得积分20
8秒前
kkxxyyy完成签到,获得积分10
9秒前
9秒前
9秒前
研ge发布了新的文献求助10
9秒前
10秒前
蔺亦丝发布了新的文献求助10
10秒前
10秒前
11秒前
个性乐荷应助chuanchuan采纳,获得10
12秒前
12秒前
科研通AI2S应助kkxxyyy采纳,获得10
12秒前
13秒前
13秒前
YY发布了新的文献求助10
14秒前
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186