A benchmark for hypothalamus segmentation on T1-weighted MR images

水准点(测量) 分割 人工智能 计算机科学 模式识别(心理学) 心理学 地图学 地理
作者
Lívia Rodrigues,Thiago Junqueira Ribeiro de Rezende,Guilherme Soares de Oliveira Wertheimer,Yves Santos,Marcondes C. França,Letícia Rittner
出处
期刊:NeuroImage [Elsevier]
卷期号:264: 119741-119741 被引量:7
标识
DOI:10.1016/j.neuroimage.2022.119741
摘要

The hypothalamus is a small brain structure that plays essential roles in sleep regulation, body temperature control, and metabolic homeostasis. Hypothalamic structural abnormalities have been reported in neuropsychiatric disorders, such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease. Although mag- netic resonance (MR) imaging is the standard examination method for evaluating this region, hypothalamic morphological landmarks are unclear, leading to subjec- tivity and high variability during manual segmentation. Due to these limitations, it is common to find contradicting results in the literature regarding hypothalamic volumetry. To the best of our knowledge, only two automated methods are available in the literature for hypothalamus segmentation, the first of which is our previous method based on U-Net. However, both methods present performance losses when predicting images from different datasets than those used in training. Therefore, this project presents a benchmark consisting of a diverse T1-weighted MR image dataset comprising 1381 subjects from IXI, CC359, OASIS, and MiLI (the latter created specifically for this benchmark). All data were provided using automatically generated hypothalamic masks and a subset containing manually annotated masks. As a baseline, a method for fully automated segmentation of the hypothalamus on T1-weighted MR images with a greater generalization ability is presented. The pro- posed method is a teacher-student-based model with two blocks: segmentation and correction, where the second corrects the imperfections of the first block. After using three datasets for training (MiLI, IXI, and CC359), the prediction performance of the model was measured on two test sets: the first was composed of data from IXI, CC359, and MiLI, achieving a Dice coefficient of 0.83; the second was from OASIS, a dataset not used for training, achieving a Dice coefficient of 0.74. The dataset, the baseline model, and all necessary codes to reproduce the experiments are available at https://github.com/MICLab-Unicamp/HypAST and https://sites.google.com/ view/calgary-campinas-dataset/hypothalamus-benchmarking. In addition, a leaderboard will be maintained with predictions for the test set submitted by anyone working on the same task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaolee完成签到 ,获得积分10
刚刚
一颗糖炒栗子完成签到,获得积分10
刚刚
358489228完成签到,获得积分10
1秒前
361发布了新的文献求助10
3秒前
研友_yLpYkn完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
全语蝶发布了新的文献求助10
5秒前
ninomae完成签到 ,获得积分10
5秒前
yinyin完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
乐乐应助sophia021012采纳,获得10
11秒前
14秒前
溯溯完成签到 ,获得积分10
16秒前
17秒前
偷得浮生半日闲完成签到,获得积分10
19秒前
20秒前
汪蔓蔓完成签到 ,获得积分10
21秒前
361发布了新的文献求助10
23秒前
坚强枫完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
曾经小伙完成签到 ,获得积分10
29秒前
33秒前
33秒前
轻松熊不轻松完成签到 ,获得积分10
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
Future完成签到 ,获得积分10
39秒前
hadfunsix完成签到 ,获得积分10
40秒前
橘子海完成签到 ,获得积分10
41秒前
Luna爱科研完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
个性的平蓝完成签到 ,获得积分10
44秒前
44秒前
量子星尘发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773368
求助须知:如何正确求助?哪些是违规求助? 5610371
关于积分的说明 15430973
捐赠科研通 4905878
什么是DOI,文献DOI怎么找? 2639904
邀请新用户注册赠送积分活动 1587778
关于科研通互助平台的介绍 1542792