亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A benchmark for hypothalamus segmentation on T1-weighted MR images

水准点(测量) 分割 人工智能 计算机科学 模式识别(心理学) 心理学 地图学 地理
作者
Lívia Rodrigues,Thiago Junqueira Ribeiro de Rezende,Guilherme Soares de Oliveira Wertheimer,Yves Santos,Marcondes C. França,Letícia Rittner
出处
期刊:NeuroImage [Elsevier]
卷期号:264: 119741-119741 被引量:7
标识
DOI:10.1016/j.neuroimage.2022.119741
摘要

The hypothalamus is a small brain structure that plays essential roles in sleep regulation, body temperature control, and metabolic homeostasis. Hypothalamic structural abnormalities have been reported in neuropsychiatric disorders, such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease. Although mag- netic resonance (MR) imaging is the standard examination method for evaluating this region, hypothalamic morphological landmarks are unclear, leading to subjec- tivity and high variability during manual segmentation. Due to these limitations, it is common to find contradicting results in the literature regarding hypothalamic volumetry. To the best of our knowledge, only two automated methods are available in the literature for hypothalamus segmentation, the first of which is our previous method based on U-Net. However, both methods present performance losses when predicting images from different datasets than those used in training. Therefore, this project presents a benchmark consisting of a diverse T1-weighted MR image dataset comprising 1381 subjects from IXI, CC359, OASIS, and MiLI (the latter created specifically for this benchmark). All data were provided using automatically generated hypothalamic masks and a subset containing manually annotated masks. As a baseline, a method for fully automated segmentation of the hypothalamus on T1-weighted MR images with a greater generalization ability is presented. The pro- posed method is a teacher-student-based model with two blocks: segmentation and correction, where the second corrects the imperfections of the first block. After using three datasets for training (MiLI, IXI, and CC359), the prediction performance of the model was measured on two test sets: the first was composed of data from IXI, CC359, and MiLI, achieving a Dice coefficient of 0.83; the second was from OASIS, a dataset not used for training, achieving a Dice coefficient of 0.74. The dataset, the baseline model, and all necessary codes to reproduce the experiments are available at https://github.com/MICLab-Unicamp/HypAST and https://sites.google.com/ view/calgary-campinas-dataset/hypothalamus-benchmarking. In addition, a leaderboard will be maintained with predictions for the test set submitted by anyone working on the same task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地理牛马完成签到 ,获得积分10
9秒前
慧灰huihui完成签到,获得积分10
13秒前
酷波er应助慧灰huihui采纳,获得10
16秒前
可耐的远侵完成签到 ,获得积分20
20秒前
obedVL完成签到,获得积分10
32秒前
cuicui完成签到,获得积分10
52秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
1分钟前
一只鲨呱发布了新的文献求助10
1分钟前
追寻依波完成签到,获得积分10
1分钟前
1分钟前
yishujia发布了新的文献求助30
1分钟前
活力广缘发布了新的文献求助20
1分钟前
Y123发布了新的文献求助10
1分钟前
xaopng完成签到,获得积分10
1分钟前
爆米花应助shier采纳,获得10
1分钟前
活力广缘完成签到,获得积分10
1分钟前
左传琦完成签到 ,获得积分10
1分钟前
NOTHING完成签到 ,获得积分10
1分钟前
1分钟前
吞吞完成签到 ,获得积分10
1分钟前
慧灰huihui发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
英俊的铭应助慧灰huihui采纳,获得10
1分钟前
Jy完成签到 ,获得积分10
2分钟前
curtain完成签到,获得积分10
2分钟前
清飏应助karstbing采纳,获得220
2分钟前
田様应助Y123采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Y123发布了新的文献求助10
2分钟前
3分钟前
领导范儿应助Y123采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023