A benchmark for hypothalamus segmentation on T1-weighted MR images

水准点(测量) 分割 人工智能 计算机科学 模式识别(心理学) 心理学 地图学 地理
作者
Lívia Rodrigues,Thiago Junqueira Ribeiro de Rezende,Guilherme Soares de Oliveira Wertheimer,Yves Santos,Marcondes C. França,Letícia Rittner
出处
期刊:NeuroImage [Elsevier]
卷期号:264: 119741-119741 被引量:7
标识
DOI:10.1016/j.neuroimage.2022.119741
摘要

The hypothalamus is a small brain structure that plays essential roles in sleep regulation, body temperature control, and metabolic homeostasis. Hypothalamic structural abnormalities have been reported in neuropsychiatric disorders, such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease. Although mag- netic resonance (MR) imaging is the standard examination method for evaluating this region, hypothalamic morphological landmarks are unclear, leading to subjec- tivity and high variability during manual segmentation. Due to these limitations, it is common to find contradicting results in the literature regarding hypothalamic volumetry. To the best of our knowledge, only two automated methods are available in the literature for hypothalamus segmentation, the first of which is our previous method based on U-Net. However, both methods present performance losses when predicting images from different datasets than those used in training. Therefore, this project presents a benchmark consisting of a diverse T1-weighted MR image dataset comprising 1381 subjects from IXI, CC359, OASIS, and MiLI (the latter created specifically for this benchmark). All data were provided using automatically generated hypothalamic masks and a subset containing manually annotated masks. As a baseline, a method for fully automated segmentation of the hypothalamus on T1-weighted MR images with a greater generalization ability is presented. The pro- posed method is a teacher-student-based model with two blocks: segmentation and correction, where the second corrects the imperfections of the first block. After using three datasets for training (MiLI, IXI, and CC359), the prediction performance of the model was measured on two test sets: the first was composed of data from IXI, CC359, and MiLI, achieving a Dice coefficient of 0.83; the second was from OASIS, a dataset not used for training, achieving a Dice coefficient of 0.74. The dataset, the baseline model, and all necessary codes to reproduce the experiments are available at https://github.com/MICLab-Unicamp/HypAST and https://sites.google.com/ view/calgary-campinas-dataset/hypothalamus-benchmarking. In addition, a leaderboard will be maintained with predictions for the test set submitted by anyone working on the same task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling_lz发布了新的文献求助10
1秒前
2秒前
tramp应助完美的海秋采纳,获得10
2秒前
丁丁发布了新的文献求助10
3秒前
可乐完成签到,获得积分10
3秒前
熬夜做实验完成签到,获得积分10
4秒前
4秒前
Asteroid完成签到,获得积分10
5秒前
afatinib发布了新的文献求助20
5秒前
6秒前
7秒前
凌小兔完成签到,获得积分10
8秒前
田様应助wrng采纳,获得10
8秒前
hahaha关注了科研通微信公众号
10秒前
shadow发布了新的文献求助10
10秒前
木之尹完成签到 ,获得积分10
11秒前
暂无发布了新的文献求助10
11秒前
keepa完成签到,获得积分10
11秒前
李李发布了新的文献求助10
12秒前
Raisin完成签到 ,获得积分10
12秒前
风中的棒棒糖完成签到,获得积分10
14秒前
曹姗完成签到,获得积分10
15秒前
16秒前
flyfish完成签到 ,获得积分10
17秒前
18秒前
听雨发布了新的文献求助10
18秒前
nz完成签到,获得积分10
20秒前
科研通AI2S应助洪焕良采纳,获得10
21秒前
万能图书馆应助1111采纳,获得10
21秒前
科研通AI2S应助完美的海秋采纳,获得10
21秒前
21秒前
wrng发布了新的文献求助10
21秒前
liao完成签到,获得积分10
21秒前
春申君完成签到 ,获得积分10
21秒前
无奈滑板发布了新的文献求助10
22秒前
小陈陈要读博完成签到,获得积分10
23秒前
23秒前
24秒前
Bi8bo完成签到 ,获得积分10
26秒前
上官若男应助听雨采纳,获得10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244106
求助须知:如何正确求助?哪些是违规求助? 2887900
关于积分的说明 8250281
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625975