A benchmark for hypothalamus segmentation on T1-weighted MR images

水准点(测量) 分割 人工智能 计算机科学 模式识别(心理学) 心理学 地图学 地理
作者
Lívia Rodrigues,Thiago Junqueira Ribeiro de Rezende,Guilherme Soares de Oliveira Wertheimer,Yves Santos,Marcondes C. França,Letícia Rittner
出处
期刊:NeuroImage [Elsevier]
卷期号:264: 119741-119741 被引量:7
标识
DOI:10.1016/j.neuroimage.2022.119741
摘要

The hypothalamus is a small brain structure that plays essential roles in sleep regulation, body temperature control, and metabolic homeostasis. Hypothalamic structural abnormalities have been reported in neuropsychiatric disorders, such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease. Although mag- netic resonance (MR) imaging is the standard examination method for evaluating this region, hypothalamic morphological landmarks are unclear, leading to subjec- tivity and high variability during manual segmentation. Due to these limitations, it is common to find contradicting results in the literature regarding hypothalamic volumetry. To the best of our knowledge, only two automated methods are available in the literature for hypothalamus segmentation, the first of which is our previous method based on U-Net. However, both methods present performance losses when predicting images from different datasets than those used in training. Therefore, this project presents a benchmark consisting of a diverse T1-weighted MR image dataset comprising 1381 subjects from IXI, CC359, OASIS, and MiLI (the latter created specifically for this benchmark). All data were provided using automatically generated hypothalamic masks and a subset containing manually annotated masks. As a baseline, a method for fully automated segmentation of the hypothalamus on T1-weighted MR images with a greater generalization ability is presented. The pro- posed method is a teacher-student-based model with two blocks: segmentation and correction, where the second corrects the imperfections of the first block. After using three datasets for training (MiLI, IXI, and CC359), the prediction performance of the model was measured on two test sets: the first was composed of data from IXI, CC359, and MiLI, achieving a Dice coefficient of 0.83; the second was from OASIS, a dataset not used for training, achieving a Dice coefficient of 0.74. The dataset, the baseline model, and all necessary codes to reproduce the experiments are available at https://github.com/MICLab-Unicamp/HypAST and https://sites.google.com/ view/calgary-campinas-dataset/hypothalamus-benchmarking. In addition, a leaderboard will be maintained with predictions for the test set submitted by anyone working on the same task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的夏烟完成签到,获得积分10
刚刚
1秒前
堪雅寒完成签到,获得积分10
1秒前
spring079完成签到,获得积分10
1秒前
1秒前
linliqing完成签到,获得积分10
1秒前
1秒前
JamesPei应助happiness采纳,获得10
1秒前
flying蝈蝈完成签到,获得积分10
1秒前
vvvvvv完成签到,获得积分10
2秒前
2秒前
热心乐驹完成签到,获得积分10
3秒前
念念完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
123study0完成签到,获得积分10
4秒前
锂氧完成签到,获得积分10
4秒前
曼曼发布了新的文献求助10
5秒前
5秒前
FashionBoy应助菠萝水手采纳,获得30
6秒前
Orange应助洋芋土豆丝采纳,获得10
6秒前
6秒前
6秒前
dockercompose99完成签到,获得积分10
6秒前
6秒前
7秒前
huahua发布了新的文献求助10
7秒前
李爱国应助全球免费科研1采纳,获得10
7秒前
7秒前
锂氧发布了新的文献求助10
8秒前
收集快乐完成签到 ,获得积分10
8秒前
幻心发布了新的文献求助10
8秒前
幽默孤容发布了新的文献求助10
9秒前
9秒前
9秒前
本本发布了新的文献求助10
9秒前
yl完成签到,获得积分10
9秒前
jack完成签到,获得积分10
10秒前
易子发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439