A Smart Car Parking System Based on IoT with Gray Wolf Optimization-Probability Correlated Neural Network Recognition Methods

计算机科学 物联网 人工神经网络 交通拥挤 实时计算 人工智能 停车场 智能交通系统 数据挖掘 运输工程 工程类 嵌入式系统 土木工程
作者
Anumolu Lasmika,Mathivanan Kumaresan
出处
期刊:Ingénierie Des Systèmes D'information [International Information and Engineering Technology Association]
卷期号:27 (5): 807-814
标识
DOI:10.18280/isi.270514
摘要

The use of vehicles is increasing every day because of the growing industrialization. Hence, parking the vehicles in the metropolitan cities could create the traffic congestion, which is one of the major problem need to be resolved in the smart city systems. For this purpose, this research work intends to develop a smart car parking system with proper controlling and monitoring units. The main motive of this work was to avoid the traffic congestion by developing an advanced car parking system with the help of Internet of Things (IoT) technology. Also, an image processing technique is utilized in this framework for identifying whether the car is present or not in the parking area. In which, an Anisotropic Diffusion Gaussian Filtering (ADGF) technique is utilized to preprocess the given image for improving the quality and reducing the noise effects. After that, the Grey Level Co-occurrence Matrix (GLCM) is employed to extract the contrast, correlation, energy and homogeneity features. After that, the suitable number of features are optimally selected by using the Grey Wolf Optimization (GWO) technique, which efficiently improves the speed of operation. Finally, the Probability Correlated Neural Network (PCNN) technique deployed for accurately recognizing that whether the car is present or not. For validation, the performance of this scheme is evaluated and compared by using various measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peas完成签到 ,获得积分10
刚刚
佩奇完成签到,获得积分10
1秒前
大模型应助秭归采纳,获得10
1秒前
诚心安露完成签到,获得积分10
1秒前
所所应助陳十一采纳,获得10
1秒前
Polly完成签到,获得积分10
1秒前
咩咩羊完成签到,获得积分10
2秒前
卿久久完成签到,获得积分10
2秒前
西门访天应助壮壮妞采纳,获得10
2秒前
小mol仙完成签到,获得积分10
2秒前
3秒前
waoller1发布了新的文献求助10
4秒前
Young完成签到,获得积分10
4秒前
雨落完成签到,获得积分20
4秒前
FashionBoy应助斤斤计较采纳,获得10
4秒前
张小兔啊完成签到,获得积分10
4秒前
5秒前
青春梦完成签到 ,获得积分10
5秒前
钱财实景完成签到,获得积分10
5秒前
徐佳达关注了科研通微信公众号
5秒前
耶喽小黄发布了新的文献求助10
5秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
华仔应助zmm采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
Cloud应助科研通管家采纳,获得20
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
balzacsun完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研小白完成签到,获得积分10
6秒前
ShowMaker应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
调研昵称发布了新的文献求助20
7秒前
汤锐完成签到,获得积分10
8秒前
可爱的函函应助陶一二采纳,获得10
8秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151000
求助须知:如何正确求助?哪些是违规求助? 2802506
关于积分的说明 7848292
捐赠科研通 2459791
什么是DOI,文献DOI怎么找? 1309336
科研通“疑难数据库(出版商)”最低求助积分说明 628894
版权声明 601757