细胞生物学
生物
糖酵解
表型
下调和上调
内分泌学
基因
遗传学
新陈代谢
作者
Mengying Wu,Weifang Liu,Haixia Huang,Zhirui Chen,Yangyang Chen,Yanqi Zhong,Zhishan Jin,Xiaoxia Liu,Li Zou
出处
期刊:Placenta
[Elsevier]
日期:2022-12-01
卷期号:130: 25-33
被引量:4
标识
DOI:10.1016/j.placenta.2022.10.010
摘要
Vascular smooth muscle cells (VSMC) switched from a contractile phenotype to a synthetic phenotype during the decidual spiral artery (SPAs) remodeling process. The lncRNA plasmacytoma variant translocation 1 (PVT1) and glucose metabolism have been found to regulate the VSMC phenotype switch. This study aimed to analyze the dynamic expression of PVT1 and glycolytic key enzymes hexokinase2 (HK2) at different remodeling stages in early human pregnancy and elucidate the underlying mechanism of the PVT1/miR-145-5p/HK2 axis involved in the spiral artery remodeling.qRT-PCR, Western blot (WB) analysis, Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were used to detect the expression and localization of PVT1 and HK2 in decidual tissue. HA-VSMCs were transfected with specific siRNA, shRNA and plasmids to regulate corresponding genes. Extracellular lactate, cellular ATP, ROS, and intracellular NADPH levels were measured using the corresponding assay kits. Migration was measured by wound-healing and Transwell assays. Contractile phenotypic markers α-SMA, MYH11 with calponin and synthetic phenotypic markers OPN and vimentin were detected by WB. The PDC model was used to detect the degree of spiral arterial remodeling.PVT1 and HK2 were upregulated with gestational age (GA) increasing in decidual tissue during the early pregnancy. HK2 regulated the glycolytic activity and VSMC phenotype switch in vitro. PVT1 regulated the glycolytic activity and VSMC phenotype switch through HK2. PVT1 played a ceRNA role in regulating HK2 expression by sponging miR-145-5p. PVT1 and HK2 influenced spiral artery remodeling in the PDC model.PVT1 and HK2 were upregulated, and miR-145-5p was downregulated in decidua with the GA increasing. Meanwhile, the PVT1/miR-145-5p/HK2 axis may be involved in regulating the phenotypic switch and migratory capacity of VSMCs by affecting glycolysis in decidual SPAs remodeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI