MINI-EX: Integrative inference of single-cell gene regulatory networks in plants

生物 基因调控网络 拟南芥 调节器 计算生物学 多细胞生物 转录因子 稳健性(进化) 基因表达调控 电池类型 基因表达谱 基因表达 基因 细胞 遗传学 突变体
作者
Camilla Ferrari,Nicolás Manosalva Pérez,Klaas Vandepoele
出处
期刊:Molecular Plant [Elsevier]
卷期号:15 (11): 1807-1824 被引量:6
标识
DOI:10.1016/j.molp.2022.10.016
摘要

Multicellular organisms, such as plants, are characterized by highly specialized and tightly regulated cell populations, establishing specific morphological structures and executing distinct functions. Gene regulatory networks (GRNs) describe condition-specific interactions of transcription factors (TFs) regulating the expression of target genes, underpinning these specific functions. As efficient and validated methods to identify cell-type-specific GRNs from single-cell data in plants are lacking, limiting our understanding of the organization of specific cell types in both model species and crops, we developed MINI-EX (Motif-Informed Network Inference based on single-cell EXpression data), an integrative approach to infer cell-type-specific networks in plants. MINI-EX uses single-cell transcriptomic data to define expression-based networks and integrates TF motif information to filter the inferred regulons, resulting in networks with increased accuracy. Next, regulons are assigned to different cell types, leveraging cell-specific expression, and candidate regulators are prioritized using network centrality measures, functional annotations, and expression specificity. This embedded prioritization strategy offers a unique and efficient means to unravel signaling cascades in specific cell types controlling a biological process of interest. We demonstrate the stability of MINI-EX toward input data sets with low number of cells and its robustness toward missing data, and show that it infers state-of-the-art networks with a better performance compared with other related single-cell network tools. MINI-EX successfully identifies key regulators controlling root development in Arabidopsis and rice, leaf development in Arabidopsis, and ear development in maize, enhancing our understanding of cell-type-specific regulation and unraveling the roles of different regulators controlling the development of specific cell types in plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nextconnie发布了新的文献求助10
刚刚
nextconnie发布了新的文献求助10
刚刚
CO2发布了新的文献求助10
1秒前
uniquedl完成签到 ,获得积分10
1秒前
nextconnie发布了新的文献求助10
1秒前
子伊完成签到 ,获得积分10
2秒前
5秒前
5秒前
5秒前
今后应助憨鬼憨切采纳,获得10
7秒前
7秒前
8秒前
greenPASS666完成签到,获得积分10
10秒前
KYN发布了新的文献求助10
10秒前
11秒前
meng发布了新的文献求助10
11秒前
12秒前
Leon发布了新的文献求助10
12秒前
axunQAQ发布了新的文献求助10
12秒前
111发布了新的文献求助10
13秒前
14秒前
cc发布了新的文献求助10
17秒前
程勋航完成签到,获得积分10
17秒前
HH完成签到,获得积分10
17秒前
陆千万完成签到,获得积分10
19秒前
我是125应助老疯智采纳,获得10
19秒前
LEE发布了新的文献求助10
19秒前
Leon完成签到,获得积分10
22秒前
愉快的紫丝完成签到,获得积分10
22秒前
24秒前
玩命的紫南完成签到 ,获得积分10
25秒前
25秒前
25秒前
剁辣椒蒸鱼头完成签到 ,获得积分10
27秒前
牛牛要当院士喽完成签到,获得积分10
27秒前
27秒前
香蕉觅云应助lyt采纳,获得10
28秒前
WJ发布了新的文献求助10
29秒前
30秒前
dbq完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849