Generalizability of an acute kidney injury prediction model across health systems

概化理论 急性肾损伤 医学 急诊医学 重症监护医学 内科学 统计 数学
作者
Jie Cao,Yun Han,Vahakn B. Shahinian,Huiying Yin,Diane Steffick,Rajiv Saran,Susan T. Crowley,Michael R. Mathis,Girish N. Nadkarni,Michael Heung,Karandeep Singh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1121-1129 被引量:22
标识
DOI:10.1038/s42256-022-00563-8
摘要

Delays in the identification of acute kidney injury (AKI) in hospitalized patients are a major barrier to the development of effective interventions to treat AKI. A recent study by Tomasev and colleagues at DeepMind described a model that achieved a state-of-the-art performance in predicting AKI up to 48 hours in advance.1 Because this model was trained in a population of US Veterans that was 94% male, questions have arisen about its reproducibility and generalizability. In this study, we aimed to reproduce key aspects of this model, trained and evaluated it in a similar population of US Veterans, and evaluated its generalizability in a large academic hospital setting. We found that the model performed worse in predicting AKI in females in both populations, with miscalibration in lower stages of AKI and worse discrimination (a lower area under the curve) in higher stages of AKI. We demonstrate that while this discrepancy in performance can be largely corrected in non-Veterans by updating the original model using data from a sex-balanced academic hospital cohort, the worse model performance persists in Veterans. Our study sheds light on the importance of reproducing artificial intelligence studies, and on the complexity of discrepancies in model performance in subgroups that cannot be explained simply on the basis of sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
demo完成签到,获得积分10
1秒前
Lucas应助大方的乐天采纳,获得10
1秒前
2秒前
风清月明已深秋完成签到,获得积分10
2秒前
思源应助茶茶采纳,获得10
3秒前
4秒前
apple完成签到,获得积分10
4秒前
4秒前
阿鑫完成签到 ,获得积分10
4秒前
lll完成签到,获得积分20
5秒前
顾矜应助wangli采纳,获得10
6秒前
6秒前
7秒前
8秒前
wuuuuuuu完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ng9jR2发布了新的文献求助10
10秒前
ahin发布了新的文献求助10
11秒前
超开心发布了新的文献求助10
11秒前
俏皮的机器猫完成签到,获得积分20
11秒前
diraczh完成签到,获得积分10
11秒前
兔子发布了新的文献求助10
12秒前
12秒前
抵澳报了完成签到,获得积分0
13秒前
冷静水杯发布了新的文献求助10
13秒前
14秒前
jackzzs完成签到,获得积分10
14秒前
连长发布了新的文献求助30
15秒前
wp关闭了wp文献求助
15秒前
xxx发布了新的文献求助10
15秒前
ZZZ关注了科研通微信公众号
16秒前
16秒前
舒适香露发布了新的文献求助10
16秒前
17秒前
17秒前
JJ完成签到,获得积分10
17秒前
传奇3应助zhangxinan采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940