已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generalizability of an acute kidney injury prediction model across health systems

概化理论 急性肾损伤 医学 急诊医学 重症监护医学 内科学 统计 数学
作者
Jie Cao,Yun Han,Vahakn B. Shahinian,Huiying Yin,Diane Steffick,Rajiv Saran,Susan T. Crowley,Michael R. Mathis,Girish N. Nadkarni,Michael Heung,Karandeep Singh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1121-1129 被引量:22
标识
DOI:10.1038/s42256-022-00563-8
摘要

Delays in the identification of acute kidney injury (AKI) in hospitalized patients are a major barrier to the development of effective interventions to treat AKI. A recent study by Tomasev and colleagues at DeepMind described a model that achieved a state-of-the-art performance in predicting AKI up to 48 hours in advance.1 Because this model was trained in a population of US Veterans that was 94% male, questions have arisen about its reproducibility and generalizability. In this study, we aimed to reproduce key aspects of this model, trained and evaluated it in a similar population of US Veterans, and evaluated its generalizability in a large academic hospital setting. We found that the model performed worse in predicting AKI in females in both populations, with miscalibration in lower stages of AKI and worse discrimination (a lower area under the curve) in higher stages of AKI. We demonstrate that while this discrepancy in performance can be largely corrected in non-Veterans by updating the original model using data from a sex-balanced academic hospital cohort, the worse model performance persists in Veterans. Our study sheds light on the importance of reproducing artificial intelligence studies, and on the complexity of discrepancies in model performance in subgroups that cannot be explained simply on the basis of sample size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
paul完成签到,获得积分10
1秒前
2秒前
小智完成签到 ,获得积分10
2秒前
4秒前
搜集达人应助tguczf采纳,获得10
5秒前
隐形曼青应助猜猜我是谁采纳,获得20
6秒前
6秒前
sleeping完成签到 ,获得积分10
7秒前
7秒前
Ava应助诸葛亮晶晶采纳,获得10
8秒前
白华苍松完成签到,获得积分10
9秒前
AAA问题批发商完成签到 ,获得积分10
9秒前
小不点发布了新的文献求助10
9秒前
Lucas应助一两二两三两斤采纳,获得10
11秒前
12秒前
科研通AI6应助大方的乐天采纳,获得10
15秒前
15秒前
18秒前
xuxingxing完成签到,获得积分10
18秒前
自由梦槐发布了新的文献求助10
20秒前
21秒前
彭于晏应助non平行线采纳,获得10
21秒前
SciGPT应助满意妙梦采纳,获得10
22秒前
24秒前
25秒前
诸葛亮晶晶完成签到,获得积分10
25秒前
26秒前
28秒前
28秒前
科研通AI6应助Hikx采纳,获得10
29秒前
29秒前
WLH完成签到,获得积分10
29秒前
levicho发布了新的文献求助10
32秒前
33秒前
34秒前
36秒前
BowieHuang应助科研通管家采纳,获得20
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685150
关于积分的说明 14837969
捐赠科研通 4668610
什么是DOI,文献DOI怎么找? 2538003
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784