Frequency-Domain Deep Guided Image Denoising

计算机科学 降噪 人工智能 噪音(视频) 频域 平滑的 非本地手段 图像复原 计算机视觉 卷积神经网络 图像噪声 模式识别(心理学) 图像(数学) 图像处理 图像去噪
作者
Zehua Sheng,Xiongwei Liu,Si-Yuan Cao,Hui-Liang Shen,Huaqi Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 6767-6781 被引量:12
标识
DOI:10.1109/tmm.2022.3214375
摘要

Despite the tremendous advances in denoising techniques, it's still challenging to restore a clean image with salient structures based on one noisy observation, especially at high noise levels. In this work, we propose a frequency-domain guided denoising algorithm to conduct denoising with the help of a well-aligned guidance image. Thanks to their structural correlations, the frequency characteristics of the guidance image can indicate whether the frequency coefficients of the noisy target image are contributed by noise or textures. Therefore, the explicit frequency decomposition enables our denoising model to avoid over-smoothing detailed contents. However, as two input images are usually captured in different fields, their structures are not always consistent. Therefore, we model guided denoising with an optimization problem which considers both the representation model of the guidance image and the fidelity to the noisy target. Further, we design a convolutional neural network, called as FGDNet, to explore the optimal solution. Due to the visual masking phenomenon, human eyes are sensitive to noise in the flat areas, but may not perceive noise around edges or textures. Therefore, we expect to remove as much noise as possible to guarantee the spatial smoothness of flat contents, while also preserving high-frequency structures. Through frequency decomposition, our model can process the low-frequency and high-frequency contents separately. We also adopt a frequency-relevant loss function to train the network. Experimental results show that, compared with state-of-the-art guided and non-guided denoisers, our FGDNet achieves higher denoising accuracy and better visual quality in both flat and texture-rich regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助研路辛苦了采纳,获得10
刚刚
李健应助Lmmcer采纳,获得10
1秒前
zzn发布了新的文献求助10
1秒前
1秒前
一色发布了新的文献求助10
1秒前
善学以致用应助成一采纳,获得30
2秒前
2秒前
ziluolan007发布了新的文献求助10
2秒前
3秒前
思源应助李雪采纳,获得10
3秒前
歪歪发布了新的文献求助10
3秒前
3秒前
Very发布了新的文献求助20
3秒前
rly完成签到,获得积分10
4秒前
Akim应助之只采纳,获得10
4秒前
4秒前
Owen应助恸哭的千鸟采纳,获得10
5秒前
lv完成签到,获得积分10
5秒前
寒冷尔蝶完成签到,获得积分10
5秒前
小瓜在吗发布了新的文献求助10
5秒前
研友_ng9Yj8发布了新的文献求助10
5秒前
5秒前
zhaoxiaoyan完成签到,获得积分10
5秒前
脑洞疼应助一玥采纳,获得10
5秒前
小紫完成签到,获得积分10
6秒前
6秒前
苹果丑发布了新的文献求助50
6秒前
7秒前
7秒前
7秒前
7秒前
顾矜应助1s采纳,获得10
7秒前
7秒前
8秒前
8秒前
王钰娈发布了新的文献求助10
9秒前
roywin发布了新的文献求助10
10秒前
10秒前
顺毛大帝应助开心市民采纳,获得10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747963
求助须知:如何正确求助?哪些是违规求助? 3290830
关于积分的说明 10071227
捐赠科研通 3006723
什么是DOI,文献DOI怎么找? 1651273
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751630