亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Social Interaction and Intention to Improve Motion Prediction Within Automated Vehicle Framework: A Review

计算机科学 运动(物理) 人工智能 人机交互
作者
Djamel Eddine Benrachou,Sébastien Glaser,Mohammed Elhenawy,Andry Rakotonirainy
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 22807-22837 被引量:19
标识
DOI:10.1109/tits.2022.3207347
摘要

Human errors contribute to 94%(±2.2%) of road crashes resulting in fatal/non-fatal causalities, vehicle damages and a predicament in the pathway to safer road systems. Automated Vehicles (AVs) have been a potential attempt in lowering the crash rate by replacing human drivers with an advanced computer-aided decision-making approach. However, AVs are yet to progress in handling the unprecedented situations involving interactions with other road users. This raises a need for a sophisticated and robust methodological framework to predict human driver interaction and intention. It is of prime importance to develop a constructive knowledge on the existing literature for a proficient forward leap in the field. To address this, we aim to conduct a comprehensive review on motion prediction methods in automated driving context with a special emphasis on model-based and data-driven approaches. Over a hundred studies related to the motion prediction for AVs have been extensively reviewed. This study recommends that the field requires more intricate classification of motion prediction methods, as the conventional three-level categorisation scheme should be upgraded to a profound and present-day context. Therefore, we attempt to provide a clear categorisation of existing motion prediction solutions by adopting four principal strategies: 1. Prediction methods, 2. Classes, 3. Algorithms and 4. Datasets. An all-inclusive summary of the reviewed studies with their respective pros and cons are also presented. Furthermore, we summarise the standard evaluation metrics applied for road users' intention estimation and trajectory prediction tasks. It is found that the recent studies are built upon multi-agent learning systems with interaction among multiple road users in the same road environment. These methods can provide reliable prediction performance in highly interactive situations over long periods of time. However, the limitation could be at the cost of higher computational complexity in comparison to conventional methods, which are simpler to design and computationally effective. It is also observed that the conventional methods can only operate over a narrow prediction horizon and seldom consider the interactions among the road users. This review contributes to knowledge in validation, addresses the discrepancies, to explicate the ambiguities and to streamline current research for a futuristic perspective beneficiary in motion prediction field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ning完成签到 ,获得积分10
12秒前
上官若男应助周凯采纳,获得10
15秒前
16秒前
斯文败类应助读书的时候采纳,获得10
27秒前
29秒前
komorebi发布了新的文献求助10
33秒前
Akim应助撒旦asd采纳,获得10
41秒前
48秒前
小宋爱科研完成签到 ,获得积分10
49秒前
非蛋白呼吸商完成签到,获得积分10
51秒前
mengliu完成签到,获得积分0
53秒前
华仔应助ohhhhhoho采纳,获得10
58秒前
Criminology34应助komorebi采纳,获得10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
英俊的铭应助读书的时候采纳,获得10
1分钟前
鱼贝贝完成签到 ,获得积分10
1分钟前
周凯发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
SAIL完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ohhhhhoho发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
烟消云散完成签到,获得积分10
2分钟前
孙泉发布了新的文献求助10
2分钟前
黎明前发布了新的文献求助10
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
黎明前完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
MiaCong完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289