已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Social Interaction and Intention to Improve Motion Prediction Within Automated Vehicle Framework: A Review

计算机科学 领域(数学) 背景(考古学) 运动(物理) 更安全的 机器学习 人工智能 撞车 弹道 建设性的 数据科学 人机交互 计算机安全 过程(计算) 天文 数学 纯数学 程序设计语言 古生物学 物理 操作系统 生物
作者
Djamel Eddine Benrachou,Sébastien Glaser,Mohammed Elhenawy,Andry Rakotonirainy
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 22807-22837 被引量:16
标识
DOI:10.1109/tits.2022.3207347
摘要

Human errors contribute to 94%(±2.2%) of road crashes resulting in fatal/non-fatal causalities, vehicle damages and a predicament in the pathway to safer road systems. Automated Vehicles (AVs) have been a potential attempt in lowering the crash rate by replacing human drivers with an advanced computer-aided decision-making approach. However, AVs are yet to progress in handling the unprecedented situations involving interactions with other road users. This raises a need for a sophisticated and robust methodological framework to predict human driver interaction and intention. It is of prime importance to develop a constructive knowledge on the existing literature for a proficient forward leap in the field. To address this, we aim to conduct a comprehensive review on motion prediction methods in automated driving context with a special emphasis on model-based and data-driven approaches. Over a hundred studies related to the motion prediction for AVs have been extensively reviewed. This study recommends that the field requires more intricate classification of motion prediction methods, as the conventional three-level categorisation scheme should be upgraded to a profound and present-day context. Therefore, we attempt to provide a clear categorisation of existing motion prediction solutions by adopting four principal strategies: 1. Prediction methods, 2. Classes, 3. Algorithms and 4. Datasets. An all-inclusive summary of the reviewed studies with their respective pros and cons are also presented. Furthermore, we summarise the standard evaluation metrics applied for road users’ intention estimation and trajectory prediction tasks. It is found that the recent studies are built upon multi-agent learning systems with interaction among multiple road users in the same road environment. These methods can provide reliable prediction performance in highly interactive situations over long periods of time. However, the limitation could be at the cost of higher computational complexity in comparison to conventional methods, which are simpler to design and computationally effective. It is also observed that the conventional methods can only operate over a narrow prediction horizon and seldom consider the interactions among the road users. This review contributes to knowledge in validation, addresses the discrepancies, to explicate the ambiguities and to streamline current research for a futuristic perspective beneficiary in motion prediction field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然面包发布了新的文献求助30
刚刚
22222发布了新的文献求助10
1秒前
Avery完成签到 ,获得积分10
5秒前
6秒前
8秒前
小肖完成签到 ,获得积分10
8秒前
美罗培南完成签到,获得积分10
9秒前
9秒前
周香完成签到 ,获得积分10
10秒前
12秒前
superZ完成签到 ,获得积分10
12秒前
彭于晏应助舒心映易采纳,获得10
13秒前
13秒前
15秒前
goldNAN完成签到,获得积分10
17秒前
老迟到的土豆完成签到 ,获得积分10
18秒前
19秒前
21秒前
领导范儿应助吴未采纳,获得10
21秒前
24秒前
淡然面包发布了新的文献求助20
24秒前
汉堡包应助waa采纳,获得10
24秒前
李李原上草完成签到 ,获得积分10
24秒前
cfsyyfujia完成签到 ,获得积分10
24秒前
SC完成签到,获得积分10
25秒前
25秒前
pyzhu完成签到,获得积分10
25秒前
bkagyin应助陶醉的蜜蜂采纳,获得10
25秒前
曙光完成签到,获得积分10
27秒前
chenchen完成签到,获得积分10
28秒前
gk123kk完成签到,获得积分10
29秒前
汤锐完成签到,获得积分10
30秒前
30秒前
Sunshine发布了新的文献求助10
30秒前
31秒前
顺心靖雁完成签到,获得积分10
32秒前
螃蟹One完成签到 ,获得积分10
35秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
杳鸢应助科研通管家采纳,获得10
35秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238656
求助须知:如何正确求助?哪些是违规求助? 2884064
关于积分的说明 8232343
捐赠科研通 2552071
什么是DOI,文献DOI怎么找? 1380475
科研通“疑难数据库(出版商)”最低求助积分说明 649011
邀请新用户注册赠送积分活动 624725