A Novel Adaptive Kalman Filter Based on Credibility Measure

卡尔曼滤波器 可靠性 计算机科学 粒子群优化 最小均方误差 扩展卡尔曼滤波器 因子(编程语言) 滤波器(信号处理) 均方误差 数学优化 算法 数学 统计 人工智能 估计员 程序设计语言 法学 计算机视觉 政治学
作者
Quanbo Ge,Xiaoming Hu,Yunyu Li,Hongli He,Zihao Song
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 103-120 被引量:12
标识
DOI:10.1109/jas.2023.123012
摘要

It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications, due to the fact that the covariances of noises are not exactly known. Our previous work reveals that in such scenario the filter calculated mean square errors (FMSE) and the true mean square errors (TMSE) become inconsistent, while FMSE and TMSE are consistent in the Kalman filter with accurate models. This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters. Obviously, it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models. Aiming at this, the concept of credibility is adopted to discuss the inconsistency problem in this paper. In order to formulate the degree of the credibility, a trust factor is constructed based on the FMSE and the TMSE. However, the trust factor can not be directly computed since the TMSE cannot be found for practical applications. Based on the definition of trust factor, the estimation of the trust factor is successfully modifled to online estimation of the TMSE. More importantly, a necessary and sufficient condition is found, which turns out to be the basis for better design of Kalman filters with high performance. Accordingly, beyond trust factor estimation with Sage-Husa technique (TFE-SHT), three novel trust factor estimation methods, which are directly numerical solving method (TFE-DNS), the particle swarm optimization method (PSO) and expectation max-imization-particle swarm optimization method (EM-PSO) are proposed. The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance. Meanwhile, the proposed EM-PSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
嘻嘻哈哈应助liudun23采纳,获得10
4秒前
whysoserious发布了新的文献求助10
4秒前
谦逊的饼完成签到,获得积分10
4秒前
科目三应助大梦要努力采纳,获得10
6秒前
哦萨尔发布了新的文献求助10
6秒前
踏实半烟完成签到,获得积分10
6秒前
生动不平发布了新的文献求助10
7秒前
和老爹豆豆完成签到,获得积分20
8秒前
77完成签到 ,获得积分10
8秒前
粗犷的尔阳完成签到,获得积分10
10秒前
wenliu完成签到,获得积分10
10秒前
随便吧发布了新的文献求助10
12秒前
153266916完成签到 ,获得积分10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
long应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
贪玩的访风完成签到 ,获得积分10
17秒前
17秒前
wanci应助每天吃土采纳,获得10
19秒前
19秒前
Mythvens完成签到,获得积分10
20秒前
薯片儿完成签到 ,获得积分10
21秒前
21秒前
ding应助难过的谷芹采纳,获得10
22秒前
小南瓜发布了新的文献求助30
22秒前
whysoserious完成签到,获得积分10
23秒前
乐乐应助行家AAA采纳,获得10
23秒前
官官完成签到 ,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252465
求助须知:如何正确求助?哪些是违规求助? 4416187
关于积分的说明 13748934
捐赠科研通 4288199
什么是DOI,文献DOI怎么找? 2352788
邀请新用户注册赠送积分活动 1349608
关于科研通互助平台的介绍 1309131