A Novel Adaptive Kalman Filter Based on Credibility Measure

卡尔曼滤波器 可靠性 计算机科学 粒子群优化 最小均方误差 扩展卡尔曼滤波器 因子(编程语言) 滤波器(信号处理) 均方误差 数学优化 算法 数学 统计 人工智能 估计员 程序设计语言 法学 计算机视觉 政治学
作者
Quanbo Ge,Xiaoming Hu,Yunyu Li,Hongli He,Zihao Song
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 103-120 被引量:26
标识
DOI:10.1109/jas.2023.123012
摘要

It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications, due to the fact that the covariances of noises are not exactly known. Our previous work reveals that in such scenario the filter calculated mean square errors (FMSE) and the true mean square errors (TMSE) become inconsistent, while FMSE and TMSE are consistent in the Kalman filter with accurate models. This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters. Obviously, it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models. Aiming at this, the concept of credibility is adopted to discuss the inconsistency problem in this paper. In order to formulate the degree of the credibility, a trust factor is constructed based on the FMSE and the TMSE. However, the trust factor can not be directly computed since the TMSE cannot be found for practical applications. Based on the definition of trust factor, the estimation of the trust factor is successfully modifled to online estimation of the TMSE. More importantly, a necessary and sufficient condition is found, which turns out to be the basis for better design of Kalman filters with high performance. Accordingly, beyond trust factor estimation with Sage-Husa technique (TFE-SHT), three novel trust factor estimation methods, which are directly numerical solving method (TFE-DNS), the particle swarm optimization method (PSO) and expectation max-imization-particle swarm optimization method (EM-PSO) are proposed. The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance. Meanwhile, the proposed EM-PSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
777发布了新的文献求助10
刚刚
Jasper应助奶茶电竞精神采纳,获得10
刚刚
1111111发布了新的文献求助10
刚刚
科研小白完成签到,获得积分10
1秒前
wave发布了新的文献求助10
1秒前
清风完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
今后应助dan1029采纳,获得10
2秒前
酷波er应助dan1029采纳,获得10
2秒前
思源应助dan1029采纳,获得10
2秒前
田様应助dan1029采纳,获得10
2秒前
ding应助dan1029采纳,获得10
2秒前
策略发布了新的文献求助10
2秒前
CipherSage应助dan1029采纳,获得10
2秒前
研友_VZG7GZ应助dan1029采纳,获得10
2秒前
小马甲应助dan1029采纳,获得10
2秒前
Lucas应助dan1029采纳,获得10
2秒前
pluto应助dan1029采纳,获得10
2秒前
3秒前
xyy发布了新的文献求助10
3秒前
sjr完成签到,获得积分10
3秒前
所所应助尊敬怀柔采纳,获得10
3秒前
一支桃桃完成签到,获得积分10
4秒前
4秒前
安安完成签到 ,获得积分10
4秒前
wnag完成签到,获得积分10
4秒前
晚灯君完成签到 ,获得积分0
4秒前
4秒前
兴奋的问旋完成签到,获得积分10
5秒前
清爽的含灵完成签到,获得积分10
5秒前
含糊的翠曼完成签到,获得积分10
5秒前
顾大大完成签到,获得积分20
6秒前
呜哇哈哈哈哈完成签到 ,获得积分10
6秒前
6秒前
6秒前
ml发布了新的文献求助10
7秒前
Spike完成签到,获得积分10
7秒前
mumu发布了新的文献求助10
7秒前
Jasper应助科研怪采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659101
求助须知:如何正确求助?哪些是违规求助? 4825945
关于积分的说明 15085232
捐赠科研通 4817760
什么是DOI,文献DOI怎么找? 2578352
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491722