A Novel Adaptive Kalman Filter Based on Credibility Measure

卡尔曼滤波器 可靠性 计算机科学 粒子群优化 最小均方误差 扩展卡尔曼滤波器 因子(编程语言) 滤波器(信号处理) 均方误差 数学优化 算法 数学 统计 人工智能 估计员 政治学 法学 计算机视觉 程序设计语言
作者
Quanbo Ge,Xiaoming Hu,Yunyu Li,Hongli He,Zihao Song
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 103-120 被引量:12
标识
DOI:10.1109/jas.2023.123012
摘要

It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications, due to the fact that the covariances of noises are not exactly known. Our previous work reveals that in such scenario the filter calculated mean square errors (FMSE) and the true mean square errors (TMSE) become inconsistent, while FMSE and TMSE are consistent in the Kalman filter with accurate models. This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters. Obviously, it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models. Aiming at this, the concept of credibility is adopted to discuss the inconsistency problem in this paper. In order to formulate the degree of the credibility, a trust factor is constructed based on the FMSE and the TMSE. However, the trust factor can not be directly computed since the TMSE cannot be found for practical applications. Based on the definition of trust factor, the estimation of the trust factor is successfully modifled to online estimation of the TMSE. More importantly, a necessary and sufficient condition is found, which turns out to be the basis for better design of Kalman filters with high performance. Accordingly, beyond trust factor estimation with Sage-Husa technique (TFE-SHT), three novel trust factor estimation methods, which are directly numerical solving method (TFE-DNS), the particle swarm optimization method (PSO) and expectation max-imization-particle swarm optimization method (EM-PSO) are proposed. The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance. Meanwhile, the proposed EM-PSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助DrLuffy采纳,获得10
刚刚
等待完成签到,获得积分10
刚刚
Xx发布了新的文献求助10
1秒前
南巷完成签到,获得积分10
1秒前
十一完成签到,获得积分10
1秒前
2秒前
小马宝莉完成签到,获得积分10
2秒前
晓伟完成签到,获得积分10
3秒前
4秒前
大个应助林山相晚暮采纳,获得10
4秒前
tracy完成签到,获得积分10
4秒前
4秒前
jasmine完成签到,获得积分10
4秒前
久而久之完成签到 ,获得积分10
4秒前
十一发布了新的文献求助10
5秒前
6秒前
DNA甲基转移酶完成签到,获得积分10
6秒前
嗯哼应助淡然凌兰采纳,获得20
6秒前
6秒前
6秒前
曾经如凡发布了新的文献求助30
6秒前
6秒前
小二郎应助蘑菇采纳,获得10
7秒前
7秒前
wang5945发布了新的文献求助10
7秒前
7秒前
zhuo完成签到,获得积分10
7秒前
zcbb完成签到,获得积分10
7秒前
ccyy完成签到 ,获得积分10
8秒前
糖糖糖唐完成签到,获得积分10
8秒前
Xx完成签到,获得积分20
8秒前
不晚发布了新的文献求助10
8秒前
keroro完成签到,获得积分10
9秒前
ning发布了新的文献求助10
9秒前
南柯完成签到,获得积分10
10秒前
Fengliguantou完成签到,获得积分20
10秒前
10秒前
兮兮完成签到,获得积分10
10秒前
11秒前
黄子发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104211
求助须知:如何正确求助?哪些是违规求助? 2755498
关于积分的说明 7633314
捐赠科研通 2408986
什么是DOI,文献DOI怎么找? 1278114
科研通“疑难数据库(出版商)”最低求助积分说明 617284
版权声明 599207