已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward Human–AI Collaboration: A Recommender System to Support CS1 Instructors to Select Problems for Assignments and Exams

计算机科学 任务(项目管理) 推荐系统 符号 过程(计算) 教学大纲 人工智能 情报检索 数学教育 程序设计语言 数学 算术 经济 管理
作者
Filipe Dwan Pereira,Luiz Oswaldo Carneiro Rodrigues,Marcelo Henrique Oliveira Henklain,Hermino Freitas,David Fernandes Oliveira,Alexandra I. Cristea,Leandro Silva Galvão de Carvalho,Seiji Isotani,Aileen Benedict,Mohsen Dorodchi,Elaine Oliveira
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 457-472 被引量:9
标识
DOI:10.1109/tlt.2022.3224121
摘要

Programming online judges (POJs) have been increasingly used in CS1 classes, as they allow students to practice and get quick feedback. For instructors, it is a useful tool for creating assignments and exams. However, selecting problems in POJs is time consuming. First, problems are generally not organized based on topics covered in the CS1 syllabus. Second, assessing whether problems require similar effort to be completed and map onto the same topic is a subjective and expert-dependent task. The difficulty increases if the instructor must create variations of these assessments, e.g., to avoid plagiarism. Thus, here, we research how to support CS1 instructors in the task of selecting problems, to compose one-size-fits-all or personalized assignments/exams. Our solution is to propose a novel intelligent recommender system, based on a fine-grained data-driven analysis of the students' effort on solving problems in the integrated development environment of a POJ system, and automatic detection of topics for CS1 problems, based on problem descriptions. Data collected from 2714 students are processed to support, via our artificial intelligence (AI) method recommendations, the instructors' decision-making process. We evaluated our method against the state of the art in a simple blind experiment with CS1 instructors ( $N =$ 35). Results show that our recommendations are 88% accurate, surpassing our baseline ( $p<$ 0.05). Finally, our work paves the way for novel POJ smart learning environments, wherein instructors define learning tasks (assignments/exams) supported by AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风不定发布了新的文献求助10
2秒前
红星路吃饼子的派大星完成签到 ,获得积分10
2秒前
3秒前
4秒前
开朗的千雁完成签到 ,获得积分10
4秒前
Jiye完成签到 ,获得积分10
5秒前
5秒前
6秒前
落后乘风完成签到 ,获得积分10
7秒前
8秒前
毛益聪完成签到,获得积分10
9秒前
9秒前
奎奎完成签到 ,获得积分10
9秒前
Kiling完成签到,获得积分10
9秒前
碧蓝的之云完成签到 ,获得积分10
10秒前
无限铸海发布了新的文献求助10
10秒前
苻谷丝发布了新的文献求助10
10秒前
洋洋发布了新的文献求助10
11秒前
13秒前
13秒前
wanshang2340发布了新的文献求助10
14秒前
ding应助任小飞采纳,获得10
14秒前
文章发发发完成签到 ,获得积分10
15秒前
君子兰完成签到,获得积分10
15秒前
利物浦2024完成签到,获得积分10
16秒前
WQwsrf发布了新的文献求助10
18秒前
Hector发布了新的文献求助10
19秒前
20秒前
20秒前
屁屁屁屁屁祺完成签到 ,获得积分10
22秒前
24秒前
26秒前
DryDry完成签到 ,获得积分10
28秒前
John完成签到 ,获得积分10
28秒前
Ava应助风不定采纳,获得10
29秒前
29秒前
30秒前
31秒前
kiveeen完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482