Toward Human–AI Collaboration: A Recommender System to Support CS1 Instructors to Select Problems for Assignments and Exams

计算机科学 任务(项目管理) 推荐系统 符号 过程(计算) 教学大纲 人工智能 情报检索 数学教育 程序设计语言 数学 算术 经济 管理
作者
Filipe Dwan Pereira,Luiz Oswaldo Carneiro Rodrigues,Marcelo Henrique Oliveira Henklain,Hermino Freitas,David Fernandes Oliveira,Alexandra I. Cristea,Leandro Silva Galvão de Carvalho,Seiji Isotani,Aileen Benedict,Mohsen Dorodchi,Elaine Oliveira
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 457-472 被引量:9
标识
DOI:10.1109/tlt.2022.3224121
摘要

Programming online judges (POJs) have been increasingly used in CS1 classes, as they allow students to practice and get quick feedback. For instructors, it is a useful tool for creating assignments and exams. However, selecting problems in POJs is time consuming. First, problems are generally not organized based on topics covered in the CS1 syllabus. Second, assessing whether problems require similar effort to be completed and map onto the same topic is a subjective and expert-dependent task. The difficulty increases if the instructor must create variations of these assessments, e.g., to avoid plagiarism. Thus, here, we research how to support CS1 instructors in the task of selecting problems, to compose one-size-fits-all or personalized assignments/exams. Our solution is to propose a novel intelligent recommender system, based on a fine-grained data-driven analysis of the students' effort on solving problems in the integrated development environment of a POJ system, and automatic detection of topics for CS1 problems, based on problem descriptions. Data collected from 2714 students are processed to support, via our artificial intelligence (AI) method recommendations, the instructors' decision-making process. We evaluated our method against the state of the art in a simple blind experiment with CS1 instructors ( $N =$ 35). Results show that our recommendations are 88% accurate, surpassing our baseline ( $p<$ 0.05). Finally, our work paves the way for novel POJ smart learning environments, wherein instructors define learning tasks (assignments/exams) supported by AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫羽倾尘发布了新的文献求助10
1秒前
xzy998应助memo采纳,获得10
1秒前
小天竺1212发布了新的文献求助10
1秒前
wyq发布了新的文献求助10
2秒前
2秒前
鞘皮发布了新的文献求助10
3秒前
我爱吃肉发布了新的文献求助30
3秒前
3秒前
对对碰完成签到,获得积分10
3秒前
Owen应助愤怒的纸飞机采纳,获得10
4秒前
4秒前
4秒前
雪魔发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
WEWE完成签到,获得积分10
7秒前
王一发布了新的文献求助10
8秒前
8秒前
嗯嗯发布了新的文献求助10
9秒前
9秒前
10秒前
321完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
Ava应助阳光的映梦采纳,获得10
13秒前
as12完成签到,获得积分10
13秒前
雪魔完成签到,获得积分10
13秒前
14秒前
科目三应助嗯嗯采纳,获得10
14秒前
15秒前
15秒前
牛牛完成签到,获得积分10
16秒前
一夜暴富发布了新的文献求助10
16秒前
shaoshao86发布了新的文献求助10
16秒前
隐形曼青应助德瓦达达娃采纳,获得10
17秒前
SciGPT应助as12采纳,获得10
18秒前
18秒前
YY完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086950
求助须知:如何正确求助?哪些是违规求助? 4302449
关于积分的说明 13407812
捐赠科研通 4127673
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264691
关于科研通互助平台的介绍 1198859