Toward Human–AI Collaboration: A Recommender System to Support CS1 Instructors to Select Problems for Assignments and Exams

计算机科学 任务(项目管理) 推荐系统 符号 过程(计算) 教学大纲 人工智能 情报检索 数学教育 程序设计语言 数学 算术 经济 管理
作者
Filipe Dwan Pereira,Luiz Oswaldo Carneiro Rodrigues,Marcelo Henrique Oliveira Henklain,Hermino Freitas,David Fernandes Oliveira,Alexandra I. Cristea,Leandro Silva Galvão de Carvalho,Seiji Isotani,Aileen Benedict,Mohsen Dorodchi,Elaine Oliveira
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 457-472 被引量:9
标识
DOI:10.1109/tlt.2022.3224121
摘要

Programming online judges (POJs) have been increasingly used in CS1 classes, as they allow students to practice and get quick feedback. For instructors, it is a useful tool for creating assignments and exams. However, selecting problems in POJs is time consuming. First, problems are generally not organized based on topics covered in the CS1 syllabus. Second, assessing whether problems require similar effort to be completed and map onto the same topic is a subjective and expert-dependent task. The difficulty increases if the instructor must create variations of these assessments, e.g., to avoid plagiarism. Thus, here, we research how to support CS1 instructors in the task of selecting problems, to compose one-size-fits-all or personalized assignments/exams. Our solution is to propose a novel intelligent recommender system, based on a fine-grained data-driven analysis of the students' effort on solving problems in the integrated development environment of a POJ system, and automatic detection of topics for CS1 problems, based on problem descriptions. Data collected from 2714 students are processed to support, via our artificial intelligence (AI) method recommendations, the instructors' decision-making process. We evaluated our method against the state of the art in a simple blind experiment with CS1 instructors ( $N =$ 35). Results show that our recommendations are 88% accurate, surpassing our baseline ( $p<$ 0.05). Finally, our work paves the way for novel POJ smart learning environments, wherein instructors define learning tasks (assignments/exams) supported by AI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
科研通AI6应助miketyson采纳,获得10
3秒前
zhangsf88完成签到,获得积分10
3秒前
Noah完成签到 ,获得积分0
3秒前
tough发布了新的文献求助10
3秒前
3秒前
DQQ发布了新的文献求助30
4秒前
明亮紫易完成签到,获得积分10
4秒前
美好斓发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
烂漫的闭月完成签到,获得积分10
6秒前
充电宝应助111采纳,获得10
6秒前
DDDD发布了新的文献求助10
6秒前
Caroline发布了新的文献求助10
8秒前
999完成签到,获得积分10
8秒前
heyan发布了新的文献求助10
8秒前
梅梅也完成签到,获得积分10
9秒前
xxxxxxxxx完成签到 ,获得积分10
9秒前
彭晓雅完成签到,获得积分10
10秒前
10秒前
sjh完成签到,获得积分10
12秒前
DQQ完成签到,获得积分10
13秒前
14秒前
Momo01完成签到 ,获得积分10
15秒前
JamesPei应助sjh采纳,获得10
15秒前
浮华发布了新的文献求助10
16秒前
ZM完成签到,获得积分10
17秒前
李大刚发布了新的文献求助10
17秒前
852应助畅快的广山采纳,获得10
17秒前
15864140827完成签到,获得积分10
17秒前
秋慕蕊发布了新的文献求助10
17秒前
19秒前
Olivia雪雪完成签到 ,获得积分10
20秒前
好大一个赣宝完成签到,获得积分10
20秒前
zjy147完成签到,获得积分10
22秒前
慕青应助11采纳,获得10
22秒前
爆米花应助ewetylgkhlj采纳,获得10
23秒前
aaaaa完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569751
求助须知:如何正确求助?哪些是违规求助? 4654787
关于积分的说明 14710532
捐赠科研通 4595981
什么是DOI,文献DOI怎么找? 2522202
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1463987