Toward Human–AI Collaboration: A Recommender System to Support CS1 Instructors to Select Problems for Assignments and Exams

计算机科学 任务(项目管理) 推荐系统 符号 过程(计算) 教学大纲 人工智能 情报检索 数学教育 程序设计语言 数学 算术 经济 管理
作者
Filipe Dwan Pereira,Luiz Oswaldo Carneiro Rodrigues,Marcelo Henrique Oliveira Henklain,Hermino Freitas,David Fernandes Oliveira,Alexandra I. Cristea,Leandro Silva Galvão de Carvalho,Seiji Isotani,Aileen Benedict,Mohsen Dorodchi,Elaine Oliveira
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 457-472 被引量:9
标识
DOI:10.1109/tlt.2022.3224121
摘要

Programming online judges (POJs) have been increasingly used in CS1 classes, as they allow students to practice and get quick feedback. For instructors, it is a useful tool for creating assignments and exams. However, selecting problems in POJs is time consuming. First, problems are generally not organized based on topics covered in the CS1 syllabus. Second, assessing whether problems require similar effort to be completed and map onto the same topic is a subjective and expert-dependent task. The difficulty increases if the instructor must create variations of these assessments, e.g., to avoid plagiarism. Thus, here, we research how to support CS1 instructors in the task of selecting problems, to compose one-size-fits-all or personalized assignments/exams. Our solution is to propose a novel intelligent recommender system, based on a fine-grained data-driven analysis of the students' effort on solving problems in the integrated development environment of a POJ system, and automatic detection of topics for CS1 problems, based on problem descriptions. Data collected from 2714 students are processed to support, via our artificial intelligence (AI) method recommendations, the instructors' decision-making process. We evaluated our method against the state of the art in a simple blind experiment with CS1 instructors ( $N =$ 35). Results show that our recommendations are 88% accurate, surpassing our baseline ( $p<$ 0.05). Finally, our work paves the way for novel POJ smart learning environments, wherein instructors define learning tasks (assignments/exams) supported by AI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助DD采纳,获得30
1秒前
幸福的丑发布了新的文献求助10
2秒前
ppttaabb完成签到,获得积分20
3秒前
大模型应助尊敬泽洋采纳,获得10
6秒前
7秒前
天真的灵发布了新的文献求助10
7秒前
9秒前
精明的梦凡关注了科研通微信公众号
9秒前
季宇完成签到,获得积分10
10秒前
晨风韵雨完成签到,获得积分10
10秒前
BowieHuang应助ZZZ采纳,获得10
10秒前
落雪123发布了新的文献求助30
11秒前
yyh发布了新的文献求助10
11秒前
Z小姐完成签到 ,获得积分10
12秒前
13秒前
烟花应助乐观的雅彤采纳,获得10
15秒前
15秒前
16秒前
李梁发布了新的文献求助10
17秒前
李爱国应助土豪的梦秋采纳,获得10
18秒前
xiao发布了新的文献求助10
18秒前
ZZZ完成签到,获得积分20
18秒前
20秒前
orixero应助落雪123采纳,获得30
21秒前
离线完成签到,获得积分10
21秒前
bkagyin应助骆凤灵采纳,获得10
22秒前
酷波er应助charles采纳,获得10
22秒前
ZJFL完成签到,获得积分10
22秒前
打打应助Peter采纳,获得10
22秒前
23秒前
25秒前
25秒前
左手树发布了新的文献求助10
26秒前
CodeCraft应助caili采纳,获得10
27秒前
Akim应助自觉荔枝采纳,获得10
27秒前
28秒前
28秒前
风清扬应助lelele采纳,获得30
29秒前
所所应助韩美女采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605551
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862295
捐赠科研通 4701787
什么是DOI,文献DOI怎么找? 2542138
邀请新用户注册赠送积分活动 1507793
关于科研通互助平台的介绍 1472113