已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward Human–AI Collaboration: A Recommender System to Support CS1 Instructors to Select Problems for Assignments and Exams

计算机科学 任务(项目管理) 推荐系统 符号 过程(计算) 教学大纲 人工智能 情报检索 数学教育 程序设计语言 数学 算术 经济 管理
作者
Filipe Dwan Pereira,Luiz Oswaldo Carneiro Rodrigues,Marcelo Henrique Oliveira Henklain,Hermino Freitas,David Fernandes Oliveira,Alexandra I. Cristea,Leandro Silva Galvão de Carvalho,Seiji Isotani,Aileen Benedict,Mohsen Dorodchi,Elaine Oliveira
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 457-472 被引量:9
标识
DOI:10.1109/tlt.2022.3224121
摘要

Programming online judges (POJs) have been increasingly used in CS1 classes, as they allow students to practice and get quick feedback. For instructors, it is a useful tool for creating assignments and exams. However, selecting problems in POJs is time consuming. First, problems are generally not organized based on topics covered in the CS1 syllabus. Second, assessing whether problems require similar effort to be completed and map onto the same topic is a subjective and expert-dependent task. The difficulty increases if the instructor must create variations of these assessments, e.g., to avoid plagiarism. Thus, here, we research how to support CS1 instructors in the task of selecting problems, to compose one-size-fits-all or personalized assignments/exams. Our solution is to propose a novel intelligent recommender system, based on a fine-grained data-driven analysis of the students' effort on solving problems in the integrated development environment of a POJ system, and automatic detection of topics for CS1 problems, based on problem descriptions. Data collected from 2714 students are processed to support, via our artificial intelligence (AI) method recommendations, the instructors' decision-making process. We evaluated our method against the state of the art in a simple blind experiment with CS1 instructors ( $N =$ 35). Results show that our recommendations are 88% accurate, surpassing our baseline ( $p<$ 0.05). Finally, our work paves the way for novel POJ smart learning environments, wherein instructors define learning tasks (assignments/exams) supported by AI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助感动凡雁采纳,获得10
1秒前
2秒前
2秒前
2秒前
小马甲应助王一一采纳,获得20
3秒前
3秒前
外向雁梅发布了新的文献求助10
3秒前
自信尔竹完成签到,获得积分10
5秒前
别看了完成签到,获得积分10
5秒前
年年发布了新的文献求助10
7秒前
che发布了新的文献求助10
8秒前
Jessica发布了新的文献求助10
9秒前
Lucas应助啊啊啊采纳,获得10
10秒前
我爱吃糯米团子完成签到,获得积分10
10秒前
充电宝应助ernest采纳,获得30
11秒前
rex完成签到,获得积分10
11秒前
12秒前
keep完成签到 ,获得积分10
12秒前
13秒前
左贵辉完成签到,获得积分20
14秒前
大个应助年年采纳,获得10
15秒前
harry完成签到,获得积分10
15秒前
heal发布了新的文献求助10
16秒前
16秒前
17秒前
ernest发布了新的文献求助30
17秒前
18秒前
harry发布了新的文献求助10
18秒前
领导范儿应助lee采纳,获得10
18秒前
18秒前
细腻的谷丝完成签到 ,获得积分20
18秒前
21秒前
22秒前
啊啊啊发布了新的文献求助10
22秒前
极速小鱼发布了新的文献求助10
22秒前
啦啦啦啦发布了新的文献求助10
22秒前
Orange应助灵巧电灯胆采纳,获得10
23秒前
田様应助悲凉的菠萝采纳,获得10
24秒前
zrn完成签到 ,获得积分10
24秒前
123发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722