Generalizable deep clustering based on Bi-LSTM with applications to sepsis and acute kidney disease populations

聚类分析 败血症 稳健性(进化) 计算机科学 急性肾损伤 人工智能 接收机工作特性 自编码 医学 数据挖掘 机器学习 内科学 深度学习 生物 生物化学 基因
作者
Yongsen Tan,Jiahui Huang,Jinhu Zhuang,Yong Liu,Haofan Huang,Xiaomei Yu,Fusheng Wang
标识
DOI:10.1109/bibm55620.2022.9995179
摘要

Despite the abundance of subphenotype clustering studies on sepsis and acute kidney injury (AKI), few models consider the real-time information of clinical features. The lack of supervision may lead to patient subgroups being derived as clusters without the stratification of patients based on the outcome of interests. The sensitivity of the dimension in clustering methods is generally ignored, so clusters lack robustness. In this study, we propose an ensembled outcome-driven bidirectional long short-term memory autoencoder (BiLSTM-AE) architecture with high robustness and transferability to identify subphenotypes. BiLSTM-AE learns the advanced representation of the time-series clinical features by co-training the encoder and a weak predictor to achieve the risk-stratified clustering of patients. Clusters of a variety of dimensions are ensembled to combine global and local information. Four different datasets from three public datasets, MIMIC-III-AKI, MIMIC-IV-sepsis, eICU-AKI, and eICU-sepsis, were used to assess the method’s effectiveness in clustering and prediction. Compared to baseline approaches including latent class analysis (LCA), subgroups generated by BiLSTMAE exhibited the highest mortality risk ratios between subgroups: the mortality for subphenotypes 1, 2, and 3 of BiLSTM and LCA was 6.91%, 17.53%, and 75.56% vs. 13.2%, 14.4%, and 19.7% for MIMIC-III-AKI. The prediction metric area under the receiver operating characteristic curve was 0.86 for MIMIC-IIIAKI, 0.91 for eICU-AKI, 0. SS for MIMIC-IV-sepsis, and 0. S9 for eICU-sepsis. Additionally, clinical evaluation of BiLSTM-AE generated subgroups revealed more meaningful distributions of member characteristics across subgroups. Thus, the method is an effective means to consider the real-time information of clinical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
化学狗完成签到,获得积分10
1秒前
yud完成签到 ,获得积分10
1秒前
2秒前
拼搏思卉发布了新的文献求助10
2秒前
3秒前
雨碎寒江完成签到,获得积分10
3秒前
4秒前
会飞的木头完成签到,获得积分10
4秒前
雪白涵山发布了新的文献求助20
4秒前
shouyu29应助MADKAI采纳,获得10
4秒前
Seiswan发布了新的文献求助10
4秒前
小小菜鸟完成签到,获得积分10
5秒前
5秒前
西西弗斯完成签到,获得积分10
5秒前
KT2440完成签到,获得积分10
6秒前
顾阿秀发布了新的文献求助10
6秒前
6秒前
6秒前
gnr2000完成签到,获得积分0
6秒前
7秒前
7秒前
BareBear应助赖道之采纳,获得10
7秒前
LEMON完成签到,获得积分10
7秒前
Ava应助buuyoo采纳,获得10
8秒前
情怀应助liuwei采纳,获得10
8秒前
aaefv完成签到,获得积分10
8秒前
小小菜鸟发布了新的文献求助10
8秒前
深情安青应助123采纳,获得10
8秒前
赫初晴完成签到 ,获得积分10
8秒前
平淡的亦丝应助明研采纳,获得20
8秒前
10秒前
库外发布了新的文献求助10
11秒前
汉堡包应助清新的冷松采纳,获得10
11秒前
从心应助LiShin采纳,获得10
11秒前
帅气的听莲完成签到,获得积分10
11秒前
英姑应助Areslcy采纳,获得10
11秒前
善学以致用应助zxz采纳,获得10
12秒前
whatever应助luoshi采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762