Machine learning–enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations

虚拟筛选 对接(动物) 分子动力学 计算机科学 计算生物学 人工智能 化学 生物 计算化学 医学 护理部
作者
Si Zheng,Yaowen Gu,Yuzhen Gu,Yelin Zhao,Liang Li,Min Wang,Rui Jiang,Xia Yu,Ting Chen,Jiao Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1)
标识
DOI:10.1093/bib/bbae696
摘要

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb. Our screening method produced satisfactory predictions on three data-splitting settings, with the top predicted bioactive compounds all known antibacterial or anti-TB drugs. To further identify and evaluate drugs with repurposing potential in TB therapy, 15 screened potential compounds were selected for subsequent computational and experimental evaluations, out of which aldoxorubicin and quarfloxin showed potent inhibition of Mtb strain H37Rv, with minimal inhibitory concentrations of 4.16 and 20.67 μM/mL, respectively. More inspiringly, these two compounds also showed antibacterial activity against multidrug-resistant TB isolates and exhibited strong antimicrobial activity against Mtb. Furthermore, molecular docking, molecular dynamics simulation, and the surface plasmon resonance experiments validated the direct binding of the two compounds to Mtb DNA gyrase. In summary, our effective comprehensive virtual screening workflow successfully repurposed two novel drugs (aldoxorubicin and quarfloxin) as promising anti-Mtb candidates. The verification results provide useful information for the further development and clinical verification of anti-TB drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助周什么园采纳,获得10
刚刚
科研通AI2S应助fane采纳,获得10
刚刚
1秒前
wanci应助筱筱采纳,获得10
2秒前
念念完成签到,获得积分10
4秒前
Daisy完成签到,获得积分10
4秒前
有点冷发布了新的文献求助10
4秒前
腼腆的洪纲完成签到,获得积分10
4秒前
5秒前
猪猪给猪猪的求助进行了留言
5秒前
6秒前
6秒前
隐形曼青应助勤劳的凝海采纳,获得10
6秒前
姜天翔完成签到,获得积分10
6秒前
6秒前
小周完成签到,获得积分10
7秒前
汉堡包应助Lee采纳,获得10
7秒前
可靠板栗完成签到,获得积分10
8秒前
秀丽映阳发布了新的文献求助10
10秒前
10秒前
乐观的访风完成签到,获得积分10
10秒前
FashionBoy应助大海123采纳,获得10
12秒前
十年HLX完成签到 ,获得积分10
12秒前
13秒前
xiyinzhiwu发布了新的文献求助10
14秒前
14秒前
简单应助个性的翠芙采纳,获得20
15秒前
我不爱池鱼应助LLL采纳,获得10
15秒前
我不爱池鱼应助LLL采纳,获得10
15秒前
道友等等我完成签到,获得积分0
16秒前
一一一完成签到,获得积分10
16秒前
ylyn发布了新的文献求助10
16秒前
愤怒的乐松应助悦耳晓露采纳,获得10
16秒前
爱吃猫的鱼完成签到,获得积分10
16秒前
八九完成签到,获得积分10
18秒前
张小北发布了新的文献求助10
18秒前
liu应助阳光向上的长峥采纳,获得10
19秒前
大模型应助有点冷采纳,获得10
20秒前
imshao完成签到,获得积分10
21秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300304
求助须知:如何正确求助?哪些是违规求助? 2935009
关于积分的说明 8471348
捐赠科研通 2608513
什么是DOI,文献DOI怎么找? 1424303
科研通“疑难数据库(出版商)”最低求助积分说明 661933
邀请新用户注册赠送积分活动 645649