Machine learning–enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations

虚拟筛选 对接(动物) 分子动力学 计算机科学 计算生物学 人工智能 化学 生物 计算化学 医学 护理部
作者
Si Zheng,Yaowen Gu,Yuzhen Gu,Yelin Zhao,Liang Li,Min Wang,Rui Jiang,Xia Yu,Ting Chen,Jiao Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1) 被引量:1
标识
DOI:10.1093/bib/bbae696
摘要

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb. Our screening method produced satisfactory predictions on three data-splitting settings, with the top predicted bioactive compounds all known antibacterial or anti-TB drugs. To further identify and evaluate drugs with repurposing potential in TB therapy, 15 screened potential compounds were selected for subsequent computational and experimental evaluations, out of which aldoxorubicin and quarfloxin showed potent inhibition of Mtb strain H37Rv, with minimal inhibitory concentrations of 4.16 and 20.67 μM/mL, respectively. More inspiringly, these two compounds also showed antibacterial activity against multidrug-resistant TB isolates and exhibited strong antimicrobial activity against Mtb. Furthermore, molecular docking, molecular dynamics simulation, and the surface plasmon resonance experiments validated the direct binding of the two compounds to Mtb DNA gyrase. In summary, our effective comprehensive virtual screening workflow successfully repurposed two novel drugs (aldoxorubicin and quarfloxin) as promising anti-Mtb candidates. The verification results provide useful information for the further development and clinical verification of anti-TB drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高廷欢关注了科研通微信公众号
1秒前
刘清河完成签到 ,获得积分10
2秒前
2秒前
CipherSage应助Arbor采纳,获得10
2秒前
小_n完成签到,获得积分10
5秒前
Cristina2024完成签到,获得积分10
6秒前
小宋完成签到,获得积分10
7秒前
8秒前
六六发布了新的文献求助10
8秒前
liuxuan发布了新的文献求助10
8秒前
科研小趴菜完成签到,获得积分10
9秒前
9秒前
ricetao完成签到,获得积分10
9秒前
今后应助你怎么睡得着觉采纳,获得10
9秒前
11秒前
大模型应助wenge采纳,获得10
11秒前
12秒前
谨慎的凝丝完成签到,获得积分10
13秒前
14秒前
小杨发布了新的文献求助10
14秒前
852应助马尼拉采纳,获得10
15秒前
15秒前
liuxuan完成签到,获得积分10
15秒前
lixian发布了新的文献求助10
16秒前
高廷欢发布了新的文献求助10
18秒前
dddd完成签到,获得积分10
18秒前
clock完成签到 ,获得积分10
18秒前
alim完成签到,获得积分10
19秒前
19秒前
yin完成签到 ,获得积分10
19秒前
19秒前
汉堡包应助年糕不糕冷采纳,获得10
20秒前
21秒前
21秒前
爵士黄瓜发布了新的文献求助10
22秒前
Fairy4964完成签到,获得积分10
22秒前
小杨完成签到,获得积分10
23秒前
苯二氮卓发布了新的文献求助10
24秒前
欣喜机器猫完成签到,获得积分10
25秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755222
求助须知:如何正确求助?哪些是违规求助? 3298337
关于积分的说明 10104946
捐赠科研通 3012971
什么是DOI,文献DOI怎么找? 1654962
邀请新用户注册赠送积分活动 789235
科研通“疑难数据库(出版商)”最低求助积分说明 753259