SVMD-based denoising methods for differential absorption lidar retrieval of CO2 concentration profiles

激光雷达 降噪 吸收(声学) 遥感 差速器(机械装置) 计算机科学 拨号 材料科学 环境科学 人工智能 地质学 物理 声学 复合材料 热力学
作者
fengrui zhang,Jun Ma,Lei Wang
标识
DOI:10.1117/12.3049764
摘要

Differential Absorption Lidar (DIAL) serves as a pivotal technique for profiling atmospheric CO2 concentrations, yet its efficacy is hampered by the presence of noise. Traditional denoising methods, such as Empirical Mode Decomposition (EMD) and its variant (EEMD), have been employed to mitigate this issue. However, these methods are not underpinned by a robust mathematical framework and are prone to the phenomenon of mode mixing, which can compromise the quality of signal decomposition. In this research, we present a novel denoising method for Differential Absorption Lidar (DIAL) signals, employing Successive Variational Mode Decomposition (SVMD) integrated with Pearson correlation coefficients. The algorithm initiates by decomposing the echo signal into a multitude of intrinsic mode functions (IMFs) through the SVMD process. Subsequently, Pearson correlation coefficients are utilized to quantitatively assess the degree of similarity between each IMF and the original signal. Only those IMFs that meet a pre-defined threshold of similarity are integrated back into the reconstruction process, yielding a refined, denoised signal. The efficacy of our proposed denoising methodology is substantiated through a comparative analysis with simulated DIAL echo signals. The results highlight the algorithm's ability to effectively reduce noise in echo signals, thereby improving the precision and effective range of CO2 concentration profile retrievals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lier应助冷酷豌豆采纳,获得10
刚刚
刚刚
Eazin发布了新的文献求助100
2秒前
3秒前
3秒前
图灵桑发布了新的文献求助10
3秒前
木木发布了新的文献求助10
3秒前
ch发布了新的文献求助10
4秒前
4秒前
4秒前
你的文献发布了新的文献求助10
4秒前
雨过天晴发布了新的文献求助10
4秒前
司徒诗蕾发布了新的文献求助10
4秒前
Orange应助lipengfei采纳,获得30
5秒前
5秒前
5秒前
5秒前
科研通AI5应助QI采纳,获得10
6秒前
kkk完成签到,获得积分10
6秒前
简默完成签到,获得积分10
6秒前
荀万声发布了新的文献求助10
7秒前
7秒前
佟天问完成签到 ,获得积分10
7秒前
11发布了新的文献求助10
7秒前
7秒前
8秒前
善学以致用应助单建安采纳,获得10
8秒前
马婷婷完成签到,获得积分10
8秒前
elle发布了新的文献求助10
9秒前
李健应助只为一碗饭采纳,获得10
9秒前
大模型应助大力的含卉采纳,获得10
9秒前
赘婿应助笨笨的店员采纳,获得10
9秒前
10秒前
10秒前
慕青应助Fishball采纳,获得10
10秒前
宇心完成签到,获得积分10
11秒前
野原x之助完成签到,获得积分10
11秒前
筱筱发布了新的文献求助10
11秒前
xiezhuochun发布了新的文献求助10
11秒前
今后应助Eazin采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160