Multi-Energy Coupling Load Forecasting in Integrated Energy System with Improved Variational Mode Decomposition-Temporal Convolutional Network-Bidirectional Long Short-Term Memory Model

联轴节(管道) 模式(计算机接口) 期限(时间) 能量(信号处理) 分解 短时记忆 计算机科学 算法 物理 人工智能 循环神经网络 人工神经网络 工程类 量子力学 操作系统 生物 机械工程 生态学
作者
Xinfu Liu,Lei Zhu,Wei Zhou,Yanfeng Cao,Wang Meng-xiao,Wenhao Hu,Chunhua Liu,Peng Liu,Guoliang Liu
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10082-10082
标识
DOI:10.3390/su162210082
摘要

Accurate load forecasting is crucial to the stable operation of integrated energy systems (IES), which plays a significant role in advancing sustainable development. Addressing the challenge of insufficient prediction accuracy caused by the inherent uncertainty and volatility of load data, this study proposes a multi-energy load forecasting method for IES using an improved VMD-TCN-BiLSTM model. The proposed model consists of optimizing the Variational Mode Decomposition (VMD) parameters through a mathematical model based on minimizing the average permutation entropy (PE). Moreover, load sequences are decomposed into different Intrinsic Mode Functions (IMFs) using VMD, with the optimal number of models determined by the average PE to reduce the non-stationarity of the original sequences. Considering the coupling relationship among electrical, thermal, and cooling loads, the input features of the forecasting model are constructed by combining the IMF set of multi-energy loads with meteorological data and related load information. As a result, a hybrid neural network structure, integrating a Temporal Convolutional Network (TCN) with a Bidirectional Long Short-Term Memory (BiLSTM) network for load prediction is developed. The Sand Cat Swarm Optimization (SCSO) algorithm is employed to obtain the optimal hyper-parameters of the TCN-BiLSTM model. A case analysis is performed using the Arizona State University Tempe campus dataset. The findings demonstrate that the proposed method can outperform six other existing models in terms of Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2), verifying its effectiveness and superiority in load forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助JM采纳,获得10
刚刚
三岁完成签到,获得积分20
刚刚
刚刚
刚刚
刚刚
2秒前
超级的洋葱完成签到,获得积分20
3秒前
勇猛的小qin完成签到 ,获得积分10
3秒前
orixero应助欣喜安蕾采纳,获得10
3秒前
jiaping发布了新的文献求助10
3秒前
3秒前
5秒前
Angel发布了新的文献求助10
5秒前
今后应助chiynn采纳,获得10
6秒前
6秒前
7秒前
好滴捏发布了新的文献求助10
8秒前
8秒前
8秒前
852应助热心傲珊采纳,获得10
9秒前
10秒前
10秒前
靓丽的鱼发布了新的文献求助10
10秒前
10秒前
屎壳郎先生完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
gone发布了新的文献求助10
12秒前
DAIXI761419发布了新的文献求助10
13秒前
等待冰之发布了新的文献求助10
13秒前
Akim应助jiaping采纳,获得10
14秒前
Aaaaaa瘾发布了新的文献求助10
14秒前
桂羽安发布了新的文献求助10
15秒前
嘿嘿发布了新的文献求助10
15秒前
隐形曼青应助谦让的口红采纳,获得10
15秒前
16秒前
生动凝旋发布了新的文献求助10
16秒前
Akim应助快乐寄风采纳,获得10
16秒前
风趣小蜜蜂完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487