Multi-Energy Coupling Load Forecasting in Integrated Energy System with Improved Variational Mode Decomposition-Temporal Convolutional Network-Bidirectional Long Short-Term Memory Model

联轴节(管道) 模式(计算机接口) 期限(时间) 能量(信号处理) 分解 短时记忆 计算机科学 算法 物理 人工智能 循环神经网络 人工神经网络 工程类 量子力学 操作系统 生物 机械工程 生态学
作者
Xinfu Liu,Wei Liu,Wei Zhou,Yanfeng Cao,Mengxiao Wang,Wenhao Hu,Chunhua Liu,Peng Liu,Guoliang Liu
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10082-10082 被引量:1
标识
DOI:10.3390/su162210082
摘要

Accurate load forecasting is crucial to the stable operation of integrated energy systems (IES), which plays a significant role in advancing sustainable development. Addressing the challenge of insufficient prediction accuracy caused by the inherent uncertainty and volatility of load data, this study proposes a multi-energy load forecasting method for IES using an improved VMD-TCN-BiLSTM model. The proposed model consists of optimizing the Variational Mode Decomposition (VMD) parameters through a mathematical model based on minimizing the average permutation entropy (PE). Moreover, load sequences are decomposed into different Intrinsic Mode Functions (IMFs) using VMD, with the optimal number of models determined by the average PE to reduce the non-stationarity of the original sequences. Considering the coupling relationship among electrical, thermal, and cooling loads, the input features of the forecasting model are constructed by combining the IMF set of multi-energy loads with meteorological data and related load information. As a result, a hybrid neural network structure, integrating a Temporal Convolutional Network (TCN) with a Bidirectional Long Short-Term Memory (BiLSTM) network for load prediction is developed. The Sand Cat Swarm Optimization (SCSO) algorithm is employed to obtain the optimal hyper-parameters of the TCN-BiLSTM model. A case analysis is performed using the Arizona State University Tempe campus dataset. The findings demonstrate that the proposed method can outperform six other existing models in terms of Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2), verifying its effectiveness and superiority in load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助sunrise采纳,获得10
刚刚
禧壹完成签到,获得积分10
1秒前
JamesPei应助Xiaohui_Yu采纳,获得10
1秒前
喵miao完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
星辰大海应助逍遥子采纳,获得10
1秒前
Arrow完成签到,获得积分10
1秒前
1秒前
luoziwuhui完成签到,获得积分10
2秒前
姜彩秀发布了新的文献求助10
2秒前
哼1完成签到 ,获得积分10
2秒前
3秒前
3秒前
沉默的倔驴应助why采纳,获得10
3秒前
熊啾啾完成签到,获得积分10
3秒前
852应助可达可达采纳,获得10
4秒前
LBJ完成签到,获得积分10
4秒前
Aaaaguo完成签到 ,获得积分10
4秒前
5秒前
5秒前
馥芮白完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
小太阳发布了新的文献求助10
8秒前
共享精神应助强公子采纳,获得10
8秒前
8秒前
totoo2021应助月兮2013采纳,获得10
8秒前
无限聋五完成签到,获得积分10
8秒前
闪闪草莓发布了新的文献求助10
8秒前
8秒前
9秒前
CipherSage应助姜彩秀采纳,获得10
9秒前
bkagyin应助nnnnnnxh采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
智慧金刚完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766395
求助须知:如何正确求助?哪些是违规求助? 5565174
关于积分的说明 15412411
捐赠科研通 4900635
什么是DOI,文献DOI怎么找? 2636548
邀请新用户注册赠送积分活动 1584789
关于科研通互助平台的介绍 1540042