Multi-Energy Coupling Load Forecasting in Integrated Energy System with Improved Variational Mode Decomposition-Temporal Convolutional Network-Bidirectional Long Short-Term Memory Model

联轴节(管道) 模式(计算机接口) 期限(时间) 能量(信号处理) 分解 短时记忆 计算机科学 算法 物理 人工智能 循环神经网络 人工神经网络 工程类 量子力学 操作系统 生物 机械工程 生态学
作者
Xinfu Liu,Wei Liu,Wei Zhou,Yanfeng Cao,Mengxiao Wang,Wenhao Hu,Chunhua Liu,Peng Liu,Guoliang Liu
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10082-10082 被引量:1
标识
DOI:10.3390/su162210082
摘要

Accurate load forecasting is crucial to the stable operation of integrated energy systems (IES), which plays a significant role in advancing sustainable development. Addressing the challenge of insufficient prediction accuracy caused by the inherent uncertainty and volatility of load data, this study proposes a multi-energy load forecasting method for IES using an improved VMD-TCN-BiLSTM model. The proposed model consists of optimizing the Variational Mode Decomposition (VMD) parameters through a mathematical model based on minimizing the average permutation entropy (PE). Moreover, load sequences are decomposed into different Intrinsic Mode Functions (IMFs) using VMD, with the optimal number of models determined by the average PE to reduce the non-stationarity of the original sequences. Considering the coupling relationship among electrical, thermal, and cooling loads, the input features of the forecasting model are constructed by combining the IMF set of multi-energy loads with meteorological data and related load information. As a result, a hybrid neural network structure, integrating a Temporal Convolutional Network (TCN) with a Bidirectional Long Short-Term Memory (BiLSTM) network for load prediction is developed. The Sand Cat Swarm Optimization (SCSO) algorithm is employed to obtain the optimal hyper-parameters of the TCN-BiLSTM model. A case analysis is performed using the Arizona State University Tempe campus dataset. The findings demonstrate that the proposed method can outperform six other existing models in terms of Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2), verifying its effectiveness and superiority in load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keji完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
维斯完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
江姜酱先生完成签到,获得积分10
5秒前
12138发布了新的文献求助10
5秒前
5秒前
6秒前
斯内克完成签到,获得积分10
6秒前
6秒前
Ava应助白一寒采纳,获得10
6秒前
柒八染发布了新的文献求助10
7秒前
7秒前
顺心煎蛋发布了新的文献求助10
8秒前
椛鈊发布了新的文献求助10
8秒前
孤独凝海完成签到,获得积分20
8秒前
Ava应助小寒同学采纳,获得10
10秒前
10秒前
英吉利25发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
852应助pgg147852采纳,获得10
11秒前
nut发布了新的文献求助10
11秒前
LW发布了新的文献求助10
12秒前
健壮的弼完成签到,获得积分10
13秒前
兰闹儿发布了新的文献求助10
13秒前
111发布了新的文献求助10
13秒前
科研通AI6应助Starrrrre采纳,获得10
13秒前
哈哈鹿发布了新的文献求助10
13秒前
鲤鱼孤兰完成签到,获得积分10
14秒前
李健的小迷弟应助杨仔采纳,获得10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646