Multi-Energy Coupling Load Forecasting in Integrated Energy System with Improved Variational Mode Decomposition-Temporal Convolutional Network-Bidirectional Long Short-Term Memory Model

联轴节(管道) 模式(计算机接口) 期限(时间) 能量(信号处理) 分解 短时记忆 计算机科学 算法 物理 人工智能 循环神经网络 人工神经网络 工程类 量子力学 操作系统 生物 机械工程 生态学
作者
Xinfu Liu,Lei Zhu,Wei Zhou,Yanfeng Cao,Wang Meng-xiao,Wenhao Hu,Chunhua Liu,Peng Liu,Guoliang Liu
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10082-10082
标识
DOI:10.3390/su162210082
摘要

Accurate load forecasting is crucial to the stable operation of integrated energy systems (IES), which plays a significant role in advancing sustainable development. Addressing the challenge of insufficient prediction accuracy caused by the inherent uncertainty and volatility of load data, this study proposes a multi-energy load forecasting method for IES using an improved VMD-TCN-BiLSTM model. The proposed model consists of optimizing the Variational Mode Decomposition (VMD) parameters through a mathematical model based on minimizing the average permutation entropy (PE). Moreover, load sequences are decomposed into different Intrinsic Mode Functions (IMFs) using VMD, with the optimal number of models determined by the average PE to reduce the non-stationarity of the original sequences. Considering the coupling relationship among electrical, thermal, and cooling loads, the input features of the forecasting model are constructed by combining the IMF set of multi-energy loads with meteorological data and related load information. As a result, a hybrid neural network structure, integrating a Temporal Convolutional Network (TCN) with a Bidirectional Long Short-Term Memory (BiLSTM) network for load prediction is developed. The Sand Cat Swarm Optimization (SCSO) algorithm is employed to obtain the optimal hyper-parameters of the TCN-BiLSTM model. A case analysis is performed using the Arizona State University Tempe campus dataset. The findings demonstrate that the proposed method can outperform six other existing models in terms of Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2), verifying its effectiveness and superiority in load forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽惋清完成签到 ,获得积分10
1秒前
614606480@qq.com完成签到,获得积分10
1秒前
Mmmmyr完成签到,获得积分10
1秒前
轻松沛萍发布了新的文献求助10
1秒前
1秒前
HW发布了新的文献求助10
2秒前
稚生w完成签到,获得积分10
2秒前
文学痞完成签到,获得积分10
2秒前
TFboy完成签到,获得积分10
2秒前
2秒前
土豪的荔枝完成签到,获得积分10
2秒前
大个应助D&L采纳,获得10
3秒前
连秋发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI6应助李男孩采纳,获得10
3秒前
Ting发布了新的文献求助10
4秒前
超帅的思山完成签到,获得积分10
4秒前
麦麦发布了新的文献求助10
4秒前
cheong发布了新的文献求助10
4秒前
5秒前
juddddddy发布了新的文献求助10
5秒前
指北针发布了新的文献求助10
5秒前
英俊的铭应助xdlongchem采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
halo完成签到 ,获得积分10
6秒前
英俊的铭应助成就的安阳采纳,获得10
6秒前
Graceluxx发布了新的文献求助10
6秒前
7秒前
冷静的莞完成签到 ,获得积分10
7秒前
救救孩子救救孩子完成签到,获得积分10
8秒前
琳科研_文献完成签到,获得积分10
8秒前
8秒前
Feng发布了新的文献求助10
8秒前
MM完成签到 ,获得积分10
9秒前
9秒前
文学痞发布了新的文献求助10
9秒前
9秒前
充电宝应助11采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330