Visualizing Endoplasmic Reticulum Stress and Autophagy in Alzheimer’s Model Cells by a Peroxynitrite-Responsive AIEgen Fluorescent Probe

内质网 自噬 过氧亚硝酸盐 细胞生物学 荧光 未折叠蛋白反应 化学 生物物理学 细胞凋亡 生物化学 生物 物理 超氧化物 量子力学
作者
Lushan Huang,Liyi Ma,Qichen Zhu,Hongyuan Wang,Guangwei She,Wensheng Shi,Lixuan Mu
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:16 (2): 223-231
标识
DOI:10.1021/acschemneuro.4c00770
摘要

Endoplasmic reticulum (ER) stress and autophagy (ER-phagy) occurring in nerve cells are crucial physiological processes closely associated with Alzheimer's disease (AD). Visualizing the two processes is paramount to advance our understanding of AD pathologies. Among the biomarkers identified, peroxynitrite (ONOO-) emerges as a key molecule in the initiation and aggravation of ER stress and ER-phagy, highlighting its significance in the underlying mechanisms of the two processes. In this work, we designed and synthesized an innovative ONOO--responsive AIEgen-based fluorescent probe (DHQM) with the ability to monitor ER stress and ER-phagy in AD model cells. DHQM demonstrated excellent aggregation-induced emission (AIE) properties, endowing it with outstanding ability for washing-free intracellular imaging. Meanwhile, it exhibited high sensitivity, remarkable selectivity to ONOO-, and exceptional ER-targeting ability. The probe was successfully applied for fluorescence imaging of ER ONOO- fluctuations to assess the ER stress status in aluminum-induced AD model cells. Our findings revealed that aluminum-induced ferroptosis, a regulated cell death process, was pivotal in the excessive ONOO- production, which in turn activated and exacerbated ER stress. Furthermore, the aluminum-stimulated ER-phagy was observed utilizing DHQM, which might be crucial in inhibiting ferroptosis and mitigating aberrant ER stress. Overall, this study not only offers valuable insights into the pathological mechanisms of AD at the ER level but also opens new potential therapeutic avenues targeting these pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
张时婕完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
song发布了新的文献求助10
7秒前
直率的心情完成签到,获得积分10
8秒前
9秒前
浪里白条发布了新的文献求助10
10秒前
11秒前
淡定的海瑶完成签到,获得积分10
12秒前
酷波er应助火山采纳,获得10
12秒前
12秒前
13秒前
song发布了新的文献求助10
13秒前
14秒前
林子青完成签到,获得积分10
15秒前
搞怪乌关注了科研通微信公众号
16秒前
怕黑傲柏发布了新的文献求助30
16秒前
16秒前
智智发布了新的文献求助10
17秒前
20秒前
小二郎应助flora芙采纳,获得10
23秒前
24秒前
song发布了新的文献求助10
24秒前
调研昵称发布了新的文献求助10
24秒前
26秒前
智智完成签到,获得积分10
26秒前
28秒前
29秒前
29秒前
Jasper应助LP采纳,获得30
29秒前
mark完成签到,获得积分10
29秒前
30秒前
满意的草莓完成签到,获得积分10
30秒前
搞怪乌发布了新的文献求助10
30秒前
火山发布了新的文献求助10
33秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469901
求助须知:如何正确求助?哪些是违规求助? 3063149
关于积分的说明 9081549
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510844
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028