Structure-based self-supervised learning enables ultrafast protein stability prediction upon mutation

理论(学习稳定性) 突变 人工智能 计算机科学 机器学习 遗传学 生物 基因
作者
Jinyuan Sun,Tong Zhu,Yinglu Cui,Bian Wu
出处
期刊:The Innovation [Elsevier BV]
卷期号:6 (1): 100750-100750 被引量:1
标识
DOI:10.1016/j.xinn.2024.100750
摘要

Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences. Herein, we introduce Pythia, a self-supervised graph neural network specifically designed for zero-shot ΔΔG predictions. Our comparative benchmarks demonstrate that Pythia outperforms other self-supervised pretraining models and force field-based approaches while also exhibiting competitive performance with fully supervised models. Notably, Pythia shows strong correlations and achieves a remarkable increase in computational speed of up to 105-fold. We further validated Pythia's performance in predicting the thermostabilizing mutations of limonene epoxide hydrolase, leading to higher experimental success rates. This exceptional efficiency has enabled us to explore 26 million high-quality protein structures, marking a significant advancement in our ability to navigate the protein sequence space and enhance our understanding of the relationships between protein genotype and phenotype. In addition, we established a web server at https://pythia.wulab.xyz to allow users to easily perform such predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云鹏完成签到,获得积分10
刚刚
桐桐应助风华采纳,获得30
1秒前
月下荷花发布了新的文献求助10
1秒前
Belinda完成签到 ,获得积分10
1秒前
wanci应助天天采纳,获得50
3秒前
wh完成签到 ,获得积分10
3秒前
思源应助天天采纳,获得50
3秒前
充电宝应助天天采纳,获得50
3秒前
pickingastar发布了新的文献求助10
3秒前
谦让l发布了新的文献求助10
3秒前
过时的电灯胆完成签到 ,获得积分10
6秒前
8秒前
9秒前
10秒前
Laospakalfski发布了新的文献求助10
11秒前
万能图书馆应助宋某采纳,获得10
12秒前
da发布了新的文献求助10
12秒前
娜娜完成签到,获得积分10
12秒前
薛雯发布了新的文献求助10
13秒前
NexusExplorer应助xiaohong采纳,获得10
14秒前
小橘子发布了新的文献求助10
15秒前
tls关注了科研通微信公众号
16秒前
16秒前
可爱大悦城完成签到,获得积分10
19秒前
双丁宝贝发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
22秒前
SOESAN发布了新的文献求助10
22秒前
23秒前
科目三应助源于期待采纳,获得10
25秒前
nano发布了新的文献求助20
26秒前
xiaohong发布了新的文献求助10
28秒前
领导范儿应助橘子味棒冰采纳,获得10
28秒前
29秒前
脑洞疼应助YoursSummer采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
兮兮完成签到,获得积分10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182