已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-informed graph neural network based on the finite volume method for steady incompressible laminar convective heat transfer

物理 层流 压缩性 机械 对流 传热 有限体积法 对流换热 不可压缩流 人工神经网络 经典力学 人工智能 计算机科学
作者
Haiming Zhang,Xin‐Lin Xia,Ze Wu,Xiaolei Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0250663
摘要

The rapid development of deep learning has significantly influenced computational studies in convective heat transfer. To facilitate broader applications of deep learning models in convective heat transfer, this paper proposes a physics-informed graph neural network based on the finite volume method (FVGP-Net) for unsupervised training and prediction of steady incompressible laminar convective heat transfer problems. In this model, mesh data generated by the finite volume method (FVM) are converted into graph data, preserving the mesh's topological properties. This conversion allows FVGP-Net to utilize a graph convolutional network for information aggregation, capturing both local and global flow features and enhancing the model's geometric adaptability and predictive performance. The model incorporates physical laws directly into its loss function, ensuring compliance to these laws without reliance on training data. Unlike traditional physics-informed neural networks (PINNs), FVGP-Net replaces automatic differentiation with FVM-based numerical differentiation, balancing training efficiency with prediction accuracy. Boundary conditions are handled in accordance with the FVM, ensuring that the model strictly satisfies these constraints. We validated FVGP-Net using representative test cases, also examining the effects of different initialization methods on model training. The results demonstrate that FVGP-Net achieves high accuracy in predicting incompressible laminar steady convective heat transfer. Compared to traditional PINNs, this model inherits the conservation properties of the FVM, enhancing velocity prediction accuracy in convective heat transfer problems by 70.03%. Furthermore, the application of transfer learning markedly accelerates training, achieving approximately 70% faster results compared to Xavier initialization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sqdr2发布了新的文献求助10
1秒前
csx发布了新的文献求助20
2秒前
2秒前
5秒前
卡奇Mikey完成签到,获得积分10
5秒前
整齐世平完成签到,获得积分10
5秒前
snowskating完成签到,获得积分10
6秒前
6秒前
6秒前
longtengfei发布了新的文献求助10
6秒前
7秒前
Owen应助米卡采纳,获得10
7秒前
9秒前
研友_VZG7GZ应助snowskating采纳,获得10
10秒前
jjjeneny发布了新的文献求助10
10秒前
YYY997完成签到,获得积分10
10秒前
小楠楠发布了新的文献求助10
11秒前
12秒前
13秒前
夏蓉发布了新的文献求助10
13秒前
归尘应助天才小熊猫采纳,获得10
14秒前
yun_hong发布了新的文献求助10
14秒前
14秒前
GuMingyang发布了新的文献求助10
16秒前
天天快乐应助longtengfei采纳,获得10
16秒前
17秒前
最牛的kangkang完成签到 ,获得积分10
17秒前
赘婿应助jjjeneny采纳,获得10
17秒前
小楠楠完成签到,获得积分10
17秒前
19秒前
19秒前
19秒前
脑洞疼应助yun_hong采纳,获得10
19秒前
ZY完成签到 ,获得积分10
20秒前
21秒前
bkagyin应助啊实打实的卡采纳,获得10
22秒前
xwwx发布了新的文献求助10
22秒前
动听雁山发布了新的文献求助30
24秒前
snowskating发布了新的文献求助10
24秒前
丫丫完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109