Numerical model of curved composite tiles under low-velocity impact loading

材料科学 复合材料 复合数
作者
Shiva Rezaei Akbarieh,Dayou Ma,Claudio Sbarufatti,Andrea Manes
出处
期刊:Journal of Composite Materials [SAGE]
标识
DOI:10.1177/00219983241298635
摘要

In recent years, composite structures have seen widespread application across diverse industries, including automotive and aerospace, owing to their favourable strength-to-weight ratio. However, these structures, particularly high-pressure vessels, are susceptible to extreme loadings such as impact forces, resulting in visible and latent damage, ultimately leading to catastrophic failures. Hence, it is imperative to assess such damages diligently. Given the cost implications associated with experimental investigations, numerical methodologies emerge as a potent means for conducting relevant analyses. This paper will introduce a numerical model approach to conducting virtual tests to assess curved carbon fibre composite tiles subjected to low-velocity impact. The primary focus of this study is to consider the impact-induced delamination on composite tiles through a numerical model. The composite tiles are conducted to 90J impact loading. Specifically, the study evaluates filament winding structures’ interface properties (shear resistance) variability during manufacturing. Notably, the parameter of shear resistance significantly impacts the anticipation of intralaminar damage (delamination) after impact loading. Three-point bending tests were performed to calibrate the composite material’s shear interface properties, followed by low-velocity impact tests on the curved composite tiles. The findings indicate that the shear resistance values, which ranged from 14.25 MPa to 60 MPa, play a critical role in predicting delamination, with lower shear resistance leading to increased damage areas. The results underscore the importance of accurately calibrating interface properties to enhance the predictive accuracy of numerical models for curved composite structures under impact loading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
调研昵称发布了新的文献求助10
刚刚
1秒前
科研通AI2S应助默默海露采纳,获得10
1秒前
彭于晏应助宝贝采纳,获得10
1秒前
金晶发布了新的文献求助10
2秒前
2秒前
Peter完成签到,获得积分20
2秒前
丰知然应助zhengke924采纳,获得10
2秒前
飘逸晓博完成签到 ,获得积分20
3秒前
coco完成签到 ,获得积分10
3秒前
科研菜鸟发布了新的文献求助10
3秒前
3秒前
大气的乌冬面完成签到,获得积分10
3秒前
3秒前
RUSTY完成签到,获得积分20
3秒前
田様应助11采纳,获得10
4秒前
4秒前
4秒前
4秒前
芝士完成签到,获得积分10
4秒前
pqy发布了新的文献求助10
4秒前
脆脆鲨完成签到,获得积分10
5秒前
5秒前
文安完成签到,获得积分10
5秒前
微笑如冰完成签到,获得积分10
6秒前
luo给luo的求助进行了留言
6秒前
晨曦发布了新的文献求助10
6秒前
6秒前
大方小白发布了新的文献求助10
6秒前
细腻沅发布了新的文献求助10
6秒前
科研通AI5应助FFF采纳,获得10
7秒前
7秒前
茉莉完成签到,获得积分10
7秒前
今今发布了新的文献求助10
8秒前
追寻的筝发布了新的文献求助10
8秒前
请叫我风吹麦浪应助Ll采纳,获得10
8秒前
Keming完成签到,获得积分10
8秒前
害羞聋五发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762