Enhancing high-resolution reconstruction of flow fields using physics-informed diffusion model with probability flow sampling

物理 流量(数学) 统计物理学 扩散 采样(信号处理) 机械 分辨率(逻辑) 分层流 光学 湍流 热力学 人工智能 探测器 计算机科学
作者
Yanan Guo,Xiaoqun Cao,Mengge Zhou,Hongze Leng,Junqiang Song
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (11)
标识
DOI:10.1063/5.0230525
摘要

The application of artificial intelligence (AI) technology in fluid dynamics is becoming increasingly prevalent, particularly in accelerating the solution of partial differential equations and predicting complex flow fields. Researchers have extensively explored deep learning algorithms for flow field super-resolution reconstruction. However, purely data-driven deep learning models in this domain face numerous challenges. These include susceptibility to variations in data distribution during model training and a lack of physical and mathematical interpretability in the predictions. These issues significantly impact the effectiveness of the models in practical applications, especially when input data exhibit irregular distributions and noise. In recent years, the rapid development of generative artificial intelligence and physics-informed deep learning algorithms has created significant opportunities for complex physical simulations. This paper proposes a novel approach that combines diffusion models with physical constraint information. By integrating physical equation constraints into the training process of diffusion models, this method achieves high-fidelity flow field reconstruction from low-resolution inputs. Thus, it not only leverages the advantages of diffusion models but also enhances the interpretability of the models. Experimental results demonstrate that, compared to traditional methods, our approach excels in generating high-resolution flow fields with enhanced detail and physical consistency. This advancement provides new insights into developing more accurate and generalized flow field reconstruction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的迎夏完成签到,获得积分10
2秒前
小可爱发布了新的文献求助30
3秒前
大模型应助milv5采纳,获得10
4秒前
4秒前
共享精神应助落雁沙采纳,获得10
4秒前
2101203142发布了新的文献求助200
5秒前
9秒前
小野狼完成签到,获得积分10
10秒前
大个应助超帅的傀斗采纳,获得10
10秒前
12秒前
14秒前
crane发布了新的文献求助10
14秒前
15秒前
朴实香露完成签到 ,获得积分10
15秒前
yyz完成签到,获得积分10
15秒前
milv5发布了新的文献求助10
17秒前
17秒前
牛顿的苹果完成签到,获得积分10
18秒前
冰箱上的贞子完成签到,获得积分10
18秒前
19秒前
Owen应助糟糕的迎夏采纳,获得10
20秒前
杜不腾发布了新的文献求助10
21秒前
ff发布了新的文献求助10
22秒前
猪猪hero应助罗拉采纳,获得10
23秒前
23秒前
23秒前
24秒前
24秒前
25秒前
梦旋发布了新的文献求助10
30秒前
医痞子发布了新的文献求助10
30秒前
杜杨帆完成签到,获得积分10
31秒前
2101203142发布了新的文献求助200
31秒前
TMU完成签到,获得积分10
32秒前
33秒前
顺利的金晶完成签到,获得积分20
34秒前
王定春发布了新的文献求助10
35秒前
传奇3应助十一苗采纳,获得30
37秒前
希望天下0贩的0应助777采纳,获得10
38秒前
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673993
求助须知:如何正确求助?哪些是违规求助? 3229404
关于积分的说明 9785706
捐赠科研通 2939973
什么是DOI,文献DOI怎么找? 1611552
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344