Performance of human expert and AI measurements in conditions of progressive image degradation

降级(电信) 图像(数学) 人工智能 计算机科学 可靠性工程 计算机视觉 工程类 电信
作者
Jevgeni Jevsikov,C Stowell,Tze Pin Ng,Beth Unsworth,Massoud Zolgharni,Dárrel P. Francis,Matthew Shun‐Shin
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:26 (Supplement_1)
标识
DOI:10.1093/ehjci/jeae333.025
摘要

Abstract Background A major challenge in real-world echocardiography is the difficulty in obtaining high quality images in some patients or some clinical settings. Is AI only useful when image quality is good? Purpose To artificially degrade adequate-quality images, and compare the ability of human experts and AI, to make measurements correctly, as image degradation worsens. Methods PLAX dimension measurements were made on videos of 30 patients with a range LV dimensions (mean 138mm, SD 37mm). To set the gold standard, 9 experts measured each image, blinded to the measurements made by others. For each original image, 5 degraded versions were then made, each progressively more degraded. The degradation was designed to be maximally confusing for this measurement, namely the addition of faint ghost images of random PLAX views of other patients. This process is automatable, reproducible, and not easy to undo by conventional image processing techniques. The 30 cases, each in original form plus 5 degraded versions, totalled 180 images, They were presented in random order for labelling by a pool of experts. They were also analysed by the Unity UK Echocardiography AI collaboratives. Results An example degradation sequence is shown in Figure 1 (upper panel), with images cropped for this abstract. Across all measurements, the expert and AI suffered progressively greater measurement error as the level of image degradation increased. On average, the AI error was N smaller than the expert error (p<0.05). For example, for LV internal dimension, the progressive rise in human error was 2.2mm, 2.5mm, 3.1mm, 3.6mm, 5.3mm, 9.6 mm, p<0.001 for trend, Figure 1 lower panel grey bars. Meanwhile for the AI, the corresponding errors were: 2.5mm, 2.5 mm, 2.7 mm, 3 mm, 3.9 mm, 8 mm. (p<0.001 for trend, Figure 1 lower panel grey bars). The Minimum Heatmap Amplitude (MHA), an automatic index of AI confidence in its measurement, also declined progressively (p<0.001 for trend). Conclusion Both humans and AI alike make less accurate measurements as image quality degrades, although the deterioration in accuracy is more predictable for AI measurements. Importantly, deterioration in image quality (and therefore doubtfulness of the measurement) can be automatically quantified through the MHA to flag measurements needing special attention. Figure 1: Progressive degradation in images (upper panel) and corresponding increase in measurement error by both human experts and AI (lower panel)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Sheryl采纳,获得10
1秒前
学术laji发布了新的文献求助10
2秒前
cloud完成签到,获得积分10
2秒前
西溪完成签到,获得积分10
3秒前
3秒前
4秒前
omkg完成签到,获得积分10
4秒前
RDF发布了新的文献求助10
7秒前
西原的橙果完成签到,获得积分10
8秒前
小王同学完成签到,获得积分10
8秒前
杳鸢应助omkg采纳,获得10
8秒前
杜华詹发布了新的文献求助10
9秒前
9秒前
Will发布了新的文献求助10
12秒前
精明人达完成签到,获得积分10
13秒前
14秒前
渊崖曙春应助杜华詹采纳,获得10
15秒前
汉堡包应助杜华詹采纳,获得10
15秒前
倒没有你的硫氰酸完成签到,获得积分10
16秒前
曾曾完成签到,获得积分10
17秒前
活泼的雨灵完成签到,获得积分10
17秒前
科研通AI2S应助Qixy采纳,获得10
17秒前
17秒前
18秒前
23秒前
科研小白鼠完成签到,获得积分10
23秒前
24秒前
26秒前
26秒前
27秒前
明理的又柔完成签到 ,获得积分20
28秒前
lsl完成签到,获得积分20
28秒前
林子觽完成签到,获得积分10
28秒前
28秒前
ding应助hihi采纳,获得10
28秒前
谢天赐完成签到 ,获得积分10
30秒前
嘚嘚发布了新的文献求助30
31秒前
Gulu_完成签到 ,获得积分10
31秒前
鱼柿子发布了新的文献求助10
31秒前
拼搏绿旋发布了新的文献求助10
32秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070