前额叶皮质
认知
神经编码
编码(社会科学)
概括性
计算机科学
代表(政治)
维数之咒
单变量
心理学
人工智能
认知心理学
认知科学
模式识别(心理学)
神经科学
机器学习
数学
统计
多元统计
政治
政治学
法学
心理治疗师
作者
Rocco Chiou,John Duncan,Elizabeth Jefferies,Matthew A. Lambon Ralph
标识
DOI:10.1523/jneurosci.0233-24.2024
摘要
Implementing cognitive control relies on neural representations that are inherently high-dimensional and distributed across multiple subregions in the prefrontal cortex (PFC). Traditional approaches tackle prefrontal representation by reducing it into a unidimensional measure (univariate amplitude) or using them to distinguish a limited number of alternatives (pattern classification). By contrast, representational similarity analysis (RSA) enables flexibly formulating various hypotheses about informational contents underlying the neural codes, explicitly comparing hypotheses, and examining the representational alignment between brain regions. Here, we used a multifaceted paradigm wherein the difficulty of cognitive control was manipulated separately for five cognitive tasks. We used RSA to unveil representational contents, measure the representational alignment between regions, and quantify representational generality
科研通智能强力驱动
Strongly Powered by AbleSci AI