Two-stage adaptive differential evolution with dynamic dual-populations for multimodal multi-objective optimization with local Pareto solutions

差异进化 人口 全局优化 数学优化 局部搜索(优化) 选择(遗传算法) 帕累托原理 计算机科学 局部最优 多目标优化 进化算法 数学 人工智能 社会学 人口学
作者
Guoqing Li,Wanliang Wang,Caitong Yue,Weiwei Zhang,Yirui Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:644: 119271-119271 被引量:10
标识
DOI:10.1016/j.ins.2023.119271
摘要

Several distinctive Pareto Sets (PSs) with an identical Pareto Front (PF) and local PSs with acceptable quality are comprised in multimodal multi-objective optimization problems (MMOPs). Recently, many multimodal multi-objective evolutionary algorithms (MMEAs) have been proposed. However, even though most of MMEAs have the ability to discover equivalent global PSs, these methods encounter failures in developing local PSs. The main reasons are that local PSs are dominated by global PSs and are removed from the population during the evolutionary process. To tackle this matter, a two-stage adaptive differential evolution with a dynamic dual-populations strategy, termed TADE_DDS, is developed. In TADE_DDS, a dynamic population strategy is put forward to divide the population into a global population that locates equivalent global PSs and a local population that aims to locate local PSs. Subsequently, the whole procedure is completed by two evolutionary stages associated with a dynamic population strategy, and an adaptive differential evolution algorithm is adopted for both global and local populations. The first-stage evolution aims to find more favorable local PSs and the second-stage evolution concentrates on finding a variety of global PSs. Additionally, a local environmental selection and a global environmental selection are performed for developing the diversity of local PSs and improving the convergence of global PSs and local PSs, respectively. TADE_DDS and several popular MMEAs are implemented on standard test problems. Experimental results demonstrate that TADE_DDS is equipped to locate both global and local PSs, and is superior to its competing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陶完成签到 ,获得积分10
刚刚
99发布了新的文献求助10
1秒前
白椋发布了新的文献求助10
1秒前
z_king_d_23完成签到,获得积分10
1秒前
蔬菜狗狗完成签到,获得积分10
2秒前
djsj完成签到,获得积分10
2秒前
kmmu0611完成签到 ,获得积分10
2秒前
iris完成签到 ,获得积分10
2秒前
WSYang完成签到,获得积分10
3秒前
sun完成签到,获得积分10
3秒前
丘比特应助如初采纳,获得10
4秒前
牛了个牛完成签到,获得积分10
4秒前
沉默听芹完成签到,获得积分10
5秒前
6秒前
sunflower完成签到,获得积分0
6秒前
犹豫的初丹完成签到,获得积分10
6秒前
zgx完成签到,获得积分10
6秒前
科研通AI5应助法码采纳,获得10
6秒前
能干的烧鹅完成签到,获得积分10
6秒前
热心路人应助djsj采纳,获得500
7秒前
wen_dai完成签到,获得积分10
7秒前
青菜完成签到,获得积分10
7秒前
我超爱cs完成签到,获得积分10
8秒前
8秒前
gg完成签到,获得积分10
8秒前
如意的新梅完成签到,获得积分10
8秒前
春樹暮雲完成签到 ,获得积分10
8秒前
个性凡儿完成签到,获得积分10
9秒前
心心完成签到,获得积分10
9秒前
乐观的香氛完成签到 ,获得积分10
10秒前
何世通完成签到 ,获得积分10
11秒前
ding应助如初采纳,获得10
11秒前
ly发布了新的文献求助10
11秒前
11秒前
小西完成签到 ,获得积分10
11秒前
顺利的若灵完成签到,获得积分10
11秒前
小棉背心完成签到 ,获得积分10
11秒前
阿九发布了新的文献求助10
12秒前
嘻嘻完成签到 ,获得积分10
12秒前
淘宝叮咚完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910