Two-stage adaptive differential evolution with dynamic dual-populations for multimodal multi-objective optimization with local Pareto solutions

差异进化 人口 全局优化 数学优化 局部搜索(优化) 选择(遗传算法) 帕累托原理 计算机科学 局部最优 多目标优化 进化算法 数学 人工智能 社会学 人口学
作者
Guoqing Li,Wanliang Wang,Caitong Yue,Weiwei Zhang,Yirui Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:644: 119271-119271 被引量:10
标识
DOI:10.1016/j.ins.2023.119271
摘要

Several distinctive Pareto Sets (PSs) with an identical Pareto Front (PF) and local PSs with acceptable quality are comprised in multimodal multi-objective optimization problems (MMOPs). Recently, many multimodal multi-objective evolutionary algorithms (MMEAs) have been proposed. However, even though most of MMEAs have the ability to discover equivalent global PSs, these methods encounter failures in developing local PSs. The main reasons are that local PSs are dominated by global PSs and are removed from the population during the evolutionary process. To tackle this matter, a two-stage adaptive differential evolution with a dynamic dual-populations strategy, termed TADE_DDS, is developed. In TADE_DDS, a dynamic population strategy is put forward to divide the population into a global population that locates equivalent global PSs and a local population that aims to locate local PSs. Subsequently, the whole procedure is completed by two evolutionary stages associated with a dynamic population strategy, and an adaptive differential evolution algorithm is adopted for both global and local populations. The first-stage evolution aims to find more favorable local PSs and the second-stage evolution concentrates on finding a variety of global PSs. Additionally, a local environmental selection and a global environmental selection are performed for developing the diversity of local PSs and improving the convergence of global PSs and local PSs, respectively. TADE_DDS and several popular MMEAs are implemented on standard test problems. Experimental results demonstrate that TADE_DDS is equipped to locate both global and local PSs, and is superior to its competing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
远山完成签到,获得积分10
2秒前
nxxxxxxxxxx完成签到,获得积分20
3秒前
3秒前
小蘑菇应助伶俐的甜瓜采纳,获得10
3秒前
朴实觅波发布了新的文献求助10
3秒前
zhouleiwang完成签到,获得积分10
4秒前
4秒前
自然的珩完成签到,获得积分10
4秒前
张羽翀发布了新的文献求助10
4秒前
祝顺遂发布了新的文献求助10
4秒前
5秒前
wu8577应助LIN_YX采纳,获得10
5秒前
老衲完成签到,获得积分0
5秒前
刘浩然发布了新的文献求助10
6秒前
852应助黑粉头头采纳,获得10
6秒前
思源应助阿瓒采纳,获得10
6秒前
7秒前
8秒前
8秒前
zeng发布了新的文献求助10
8秒前
老衲发布了新的文献求助10
10秒前
10秒前
zilhua发布了新的文献求助30
10秒前
10秒前
kikyo完成签到,获得积分10
11秒前
11秒前
11秒前
深情安青应助时安采纳,获得10
11秒前
yongkun发布了新的文献求助10
11秒前
王多鱼发布了新的文献求助30
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
karry发布了新的文献求助10
14秒前
能干的向真应助Yuanyuan采纳,获得10
14秒前
王美美发布了新的文献求助10
14秒前
zilhua完成签到,获得积分10
16秒前
16秒前
wasttt完成签到,获得积分10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646