Defect Detection with less training samples using Deep Neural Networks

卷积神经网络 样品(材料) 人工神经网络 计算机科学 过程(计算) 培训(气象学) 人工智能 针孔(光学) 铸造 深度学习 集合(抽象数据类型) 图像(数学) 模式识别(心理学) 机器学习 计算机工程 材料科学 冶金 光学 物理 气象学 化学 色谱法 程序设计语言 操作系统
作者
Gadamsetty Pranav,Tenzin Sonam,T. Sree Sharmila
标识
DOI:10.1109/icstsn57873.2023.10151506
摘要

Metal castings are products that are used everywhere. It is used in vehicles, in buildings, for construction and so on. Castings are basically molded shapes formed out of melted metal like iron. The process of making castings, however, can easily be compromised. This gives rise to defects like cracks, flow marks, porosity, and pinhole formation on the surface. Generally, ultra-sonic inspections or simple visual inspections are done to look for defects. But they are time-consuming, expensive and require more labor. In current times, computer vision is used to make the process simpler. Several neural network algorithms were experimented to do image classification. Many convolutional neural network models were experimented to receive good accuracy. But the difficulty faced during training the model is the less availability of actual data of defect goods to train. Since training samples are usually smaller, only a few algorithms like ResNet50 and EfficientNetB 7 gave better accuracy in classifying casting goods as defective or not. It became more important to see how well these algorithms do when the training sample set size becomes even less compared to the testing sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助缓慢的灵枫采纳,获得10
刚刚
ding应助痞老板采纳,获得10
刚刚
1秒前
蜡笔小新发布了新的文献求助10
1秒前
lcl完成签到,获得积分10
3秒前
李健应助科研小辣鸡采纳,获得10
3秒前
4秒前
sci完成签到,获得积分10
4秒前
4秒前
迷人问兰发布了新的文献求助10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
回忆lhy发布了新的文献求助10
8秒前
研友_LwX5Kn发布了新的文献求助10
9秒前
9秒前
张金芬发布了新的文献求助30
12秒前
英姑应助刘家小姐姐采纳,获得10
12秒前
思源应助淡然的大碗采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
宴之思完成签到,获得积分10
13秒前
朽木完成签到 ,获得积分10
14秒前
kary发布了新的文献求助30
15秒前
mx关闭了mx文献求助
15秒前
guijunmola完成签到,获得积分10
16秒前
fang关注了科研通微信公众号
16秒前
17秒前
李笑发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350