神经递质
神经科学
动力学(音乐)
纳米技术
生物物理学
化学
材料科学
物理
生物
声学
中枢神经系统
作者
Shi Luo,Lin Shao,Daizong Ji,Yiheng Chen,Xuejun Wang,Yungen Wu,Derong Kong,Meng Guo,Dapeng Wei,Yan Zhao,Yunqi Liu,Dacheng Wei
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-06-05
卷期号:23 (11): 4974-4982
被引量:6
标识
DOI:10.1021/acs.nanolett.3c00799
摘要
In biological neural networks, chemical communication follows the reversible integrate-and-fire (I&F) dynamics model, enabling efficient, anti-interference signal transport. However, existing artificial neurons fail to follow the I&F model in chemical communication, causing irreversible potential accumulation and neural system dysfunction. Herein, we develop a supercapacitively gated artificial neuron that mimics the reversible I&F dynamics model. Upon upstream neurotransmitters, an electrochemical reaction occurs on a graphene nanowall (GNW) gate electrode of artificial neurons. Charging and discharging the supercapacitive GNWs mimic membrane potential accumulation and recovery, realizing highly efficient chemical communication upon use of acetylcholine down to 2 × 10-10 M. By combining artificial chemical synapses with axon-hillock circuits, the output of neural spikes is realized. With the same neurotransmitter and I&F dynamics, the artificial neuron establishes chemical communication with other artificial neurons and living cells, holding promise as a basic unit to construct a neural network with compatibility to organisms for artificial intelligence and deep human-machine fusion.
科研通智能强力驱动
Strongly Powered by AbleSci AI