A digital twin-driven dynamic path planning approach for multiple automatic guided vehicles based on deep reinforcement learning

强化学习 计算机科学 运动规划 路径(计算) 调度(生产过程) 个性化 工业工程 分布式计算 人工智能 工程类 机器人 运营管理 计算机网络 万维网
作者
Qiangwei Bao,Pai Zheng,Sheng Dai
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:238 (4): 488-499 被引量:3
标识
DOI:10.1177/09544054231180513
摘要

With the increasing demand for customization, the tendency of mechanical manufacturing has gradually shifted to flexible and mixed-line production, which brings new challenges to the existing scheduling pattern. As an indispensable part, logistics is responsible for establishing connections among various production equipment and processes. Meanwhile, the promotion of digital twin theory introduces an application schema for the logistics system. However, there is still a deficiency in the real-time dispatching and path planning of logistics equipment due to the uncontrollability of algorithm efficiency for complex scenes. To fill this gap, a digital twin-driven dynamic path planning approach for multiple automatic guided vehicles (AGVs) is proposed. Firstly, the AGVs are virtualized as the major component of logistics systems, while the ontology expression of logistics tasks is consistently accomplished as well. Secondly, the digital twin-driven application framework of multi-AGV dispatching is established. Moreover, a dynamic path planning method for AGVs relying on deep reinforcement learning is implemented. A segmented path planning method is illustrated considering potential route conflicts, which is regarded as the key contribution of the presented research. At last, a case study is illustrated to show the entire process of multiple vehicle path planning and conflict resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级比熊完成签到,获得积分20
刚刚
yumiyumi发布了新的文献求助10
刚刚
1秒前
1秒前
疏木51完成签到,获得积分10
1秒前
魏晓林发布了新的文献求助10
1秒前
Tina_lai完成签到 ,获得积分10
1秒前
幽默的乐双应助执着谷兰采纳,获得10
1秒前
章冰海发布了新的文献求助10
2秒前
玖瑶发布了新的文献求助10
2秒前
carbonhan发布了新的文献求助10
2秒前
朽木发布了新的文献求助10
2秒前
酷波er应助泥沼采纳,获得10
2秒前
3秒前
王w完成签到,获得积分20
3秒前
乐乐应助二二采纳,获得10
4秒前
迷路的枫完成签到 ,获得积分10
4秒前
热心又蓝完成签到,获得积分10
4秒前
归尘发布了新的文献求助10
4秒前
5秒前
Tina_lai关注了科研通微信公众号
5秒前
6秒前
雨一直下完成签到,获得积分10
7秒前
angeldrn完成签到,获得积分10
7秒前
王羊补牢完成签到,获得积分10
7秒前
Wsyyy完成签到 ,获得积分10
7秒前
7秒前
苹果听枫发布了新的文献求助10
7秒前
盛夏完成签到,获得积分10
8秒前
lcj完成签到,获得积分20
8秒前
超级比熊发布了新的文献求助10
8秒前
罗明芳发布了新的文献求助30
8秒前
张笑笑完成签到,获得积分20
8秒前
9秒前
xiaoyao完成签到,获得积分10
9秒前
9秒前
10秒前
魏晓林完成签到,获得积分10
10秒前
10秒前
宓沂发布了新的文献求助20
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747915
求助须知:如何正确求助?哪些是违规求助? 3290739
关于积分的说明 10070743
捐赠科研通 3006635
什么是DOI,文献DOI怎么找? 1651226
邀请新用户注册赠送积分活动 786286
科研通“疑难数据库(出版商)”最低求助积分说明 751596