CBi-GNN: Cross-Scale Bilateral Graph Neural Network for 3D Object Detection

最小边界框 人工智能 计算机科学 模式识别(心理学) 点云 体素 特征(语言学) 特征提取 图形 计算机视觉 图像(数学) 理论计算机科学 哲学 语言学
作者
Jiaxin Chen,Xiang Li,Jin Xie,Jun Li,Jianjun Qian,Jian Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23124-23135
标识
DOI:10.1109/tits.2022.3202943
摘要

3D object detection from LiDAR point clouds is a challenging task, since the point clouds are irregular and sparse. Existing one-stage methods mainly predict the 3D bounding box of 3D objects by extracting deep down-scaled features of point clouds from low-level (high-resolution, HR) feature maps to high-level (low-resolution, LR). Nonetheless, most of these methods ignore geometric context information of the down-scaled feature maps across scales, especially only using the LR feature will result in incomplete structure and less location accuracy of 3D objects. In this paper, we propose a novel cross-scale graph network-based one-stage 3D object detector to fully exploit the geometric contexts of the voxels between the down-scaled feature maps. Specifically, we first employ a 3D sparse convolution neural network to form different resolutions of feature maps of voxels. We then dynamically construct a cross-scale bilateral graph to search the neighbor non-empty voxels in the HR feature map with a fixed radius for each non-empty voxel in the LR feature map. In the constructed graph, we present a bilateral attention mechanism (i.e., self-attention and spatial attention) in the HR feature map and encode each non-empty voxel in the LR feature map by aggregating the HR features to obtain the attention features. In addition, we design a non-local part pooling operation to improve the score of the detected bounding box of 3D objects. Finally, we formulate a multi-task loss to train our network for regression of the 3D bounding box of the 3D objects. Experiments on the challenging KITTI’s 3D/BEV benchmark show that our proposed detector outperforms all one-stage 3D object detectors and is comparable to two-stage 3D object detectors. Our code is available at https://github.com/csjxchen/CBi-GNN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜蜜的白桃完成签到 ,获得积分10
1秒前
伯爵完成签到 ,获得积分10
2秒前
贾舒涵完成签到,获得积分10
3秒前
hhh2018687完成签到,获得积分10
5秒前
benjho发布了新的文献求助10
6秒前
乒坛巨人完成签到 ,获得积分10
10秒前
耸耸完成签到 ,获得积分10
12秒前
不带走一片面包完成签到 ,获得积分10
13秒前
桥qq完成签到 ,获得积分10
15秒前
太拗口哟发布了新的文献求助10
15秒前
keyan完成签到 ,获得积分10
18秒前
科研通AI2S应助激动的访波采纳,获得10
22秒前
温暖雨灵完成签到,获得积分10
28秒前
mawenting完成签到 ,获得积分10
29秒前
吃吃货完成签到 ,获得积分10
29秒前
雪梨101完成签到 ,获得积分10
32秒前
chenchen完成签到,获得积分10
33秒前
海猫食堂完成签到,获得积分10
34秒前
35秒前
38秒前
39秒前
Yes0419应助科研通管家采纳,获得30
39秒前
mc完成签到 ,获得积分10
40秒前
她的城完成签到,获得积分0
44秒前
liciky完成签到 ,获得积分10
44秒前
研友_想想完成签到 ,获得积分10
46秒前
zyj完成签到,获得积分10
50秒前
文与武完成签到 ,获得积分10
51秒前
梧桐完成签到 ,获得积分10
52秒前
章鱼小丸子完成签到 ,获得积分10
56秒前
luoyukejing完成签到,获得积分10
57秒前
小李完成签到 ,获得积分10
1分钟前
雪儿完成签到 ,获得积分10
1分钟前
jkaaa完成签到,获得积分10
1分钟前
duanhuiyuan应助浙医小学生采纳,获得10
1分钟前
marongzhi完成签到 ,获得积分10
1分钟前
舒心小猫咪完成签到 ,获得积分10
1分钟前
cyp应助研友_nv2vBn采纳,获得10
1分钟前
VDC应助felix采纳,获得30
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041202
关于积分的说明 8984114
捐赠科研通 2729784
什么是DOI,文献DOI怎么找? 1497204
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714