A Deep Learning based Solution (Covi-DeteCT) Amidst COVID-19

计算机科学 人工智能 2019年冠状病毒病(COVID-19) 鉴定(生物学) 深度学习 可用的 机器学习 工作量 模式识别(心理学) 医学 病理 万维网 疾病 传染病(医学专业) 操作系统 生物 植物
作者
Kavita Pandey
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (5): 510-525
标识
DOI:10.2174/1573405618666220928145344
摘要

The whole world has been severely affected due to the COVID-19 pandemic. The rapid and large-scale spread has caused immense pressure on the medical sector hence increasing the chances of false detection due to human errors and mishandling of reports. At the time of outbreaks of COVID-19, there is a crucial shortage of test kits as well. Quick diagnostic testing has become one of the main challenges. For the detection of COVID-19, many Artificial Intelligence based methodologies have been proposed, a few had suggested integration of the model on a public usable platform, but none had executed this on a working application as per our knowledge.Keeping the above comprehension in mind, the objective is to provide an easy-to-use platform for COVID-19 identification. This work would be a contribution to the digitization of health facilities. This work is a fusion of deep learning classifiers and medical images to provide a speedy and accurate identification of the COVID-19 virus by analyzing the user's CT scan images of the lungs. It will assist healthcare workers in reducing their workload and decreasing the possibility of false detection.In this work, various models like Resnet50V2 and Resnet101V2, an adjusted rendition of ResNet101V2 with Feature Pyramid Network, have been applied for classifying the CT scan images into the categories: normal or COVID-19 positive.A detailed analysis of all three models' performances have been done on the SARS-CoV-2 dataset with various metrics like precision, recall, F1-score, ROC curve, etc. It was found that Resnet50V2 achieves an accuracy of 96.79%, whereas Resnet101V2 achieves an accuracy of 97.79%. An accuracy of 98.19% has been obtained by ResNet101V2 with Feature Pyramid Network. As Res- Net101V2 with Feature Pyramid Network is showing better results, thus, it is further incorporated into a working application that takes CT images as input from the user and feeds into the trained model and detects the presence of COVID-19 infection.A mobile application integrated with the deeper variant of ResNet, i.e., ResNet101V2 with FPN checks the presence of COVID-19 in a faster and accurate manner. People can use this application on their smart mobile devices. This automated system would assist healthcare workers as well, which ultimately reduces their workload and decreases the possibility of false detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
刚刚
刚刚
刘清河完成签到,获得积分20
1秒前
欣喜大地发布了新的文献求助20
1秒前
zh完成签到,获得积分10
1秒前
风中的善愁完成签到,获得积分10
2秒前
聪明无敌小腚宝完成签到,获得积分10
2秒前
小安完成签到 ,获得积分10
2秒前
3秒前
清爽达完成签到 ,获得积分10
3秒前
QY完成签到 ,获得积分10
3秒前
3秒前
罗_应助菜心采纳,获得30
3秒前
言余应助vic采纳,获得20
3秒前
发粪涂墙完成签到,获得积分10
4秒前
沐沐完成签到,获得积分10
5秒前
嘟嘟秀杰发布了新的文献求助20
5秒前
小王发布了新的文献求助10
6秒前
lucfer完成签到 ,获得积分10
6秒前
实验耗材发布了新的文献求助10
6秒前
小丸子完成签到,获得积分10
7秒前
兴奋芷发布了新的文献求助10
8秒前
8秒前
外向的梦安完成签到,获得积分10
8秒前
Sledge完成签到,获得积分10
9秒前
猫车高手发布了新的文献求助30
10秒前
聚乙二醇完成签到 ,获得积分10
10秒前
11秒前
朴实天寿完成签到,获得积分10
11秒前
wille发布了新的文献求助10
12秒前
酷波zai完成签到,获得积分10
12秒前
在水一方应助科研通管家采纳,获得10
13秒前
小熊炸毛完成签到,获得积分10
13秒前
张亮应助科研通管家采纳,获得50
13秒前
张亮应助科研通管家采纳,获得50
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567