A Deep Learning based Solution (Covi-DeteCT) Amidst COVID-19

计算机科学 人工智能 2019年冠状病毒病(COVID-19) 鉴定(生物学) 深度学习 可用的 机器学习 工作量 模式识别(心理学) 医学 病理 植物 疾病 万维网 传染病(医学专业) 生物 操作系统
作者
Kavita Pandey
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:19 (5): 510-525
标识
DOI:10.2174/1573405618666220928145344
摘要

The whole world has been severely affected due to the COVID-19 pandemic. The rapid and large-scale spread has caused immense pressure on the medical sector hence increasing the chances of false detection due to human errors and mishandling of reports. At the time of outbreaks of COVID-19, there is a crucial shortage of test kits as well. Quick diagnostic testing has become one of the main challenges. For the detection of COVID-19, many Artificial Intelligence based methodologies have been proposed, a few had suggested integration of the model on a public usable platform, but none had executed this on a working application as per our knowledge.Keeping the above comprehension in mind, the objective is to provide an easy-to-use platform for COVID-19 identification. This work would be a contribution to the digitization of health facilities. This work is a fusion of deep learning classifiers and medical images to provide a speedy and accurate identification of the COVID-19 virus by analyzing the user's CT scan images of the lungs. It will assist healthcare workers in reducing their workload and decreasing the possibility of false detection.In this work, various models like Resnet50V2 and Resnet101V2, an adjusted rendition of ResNet101V2 with Feature Pyramid Network, have been applied for classifying the CT scan images into the categories: normal or COVID-19 positive.A detailed analysis of all three models' performances have been done on the SARS-CoV-2 dataset with various metrics like precision, recall, F1-score, ROC curve, etc. It was found that Resnet50V2 achieves an accuracy of 96.79%, whereas Resnet101V2 achieves an accuracy of 97.79%. An accuracy of 98.19% has been obtained by ResNet101V2 with Feature Pyramid Network. As Res- Net101V2 with Feature Pyramid Network is showing better results, thus, it is further incorporated into a working application that takes CT images as input from the user and feeds into the trained model and detects the presence of COVID-19 infection.A mobile application integrated with the deeper variant of ResNet, i.e., ResNet101V2 with FPN checks the presence of COVID-19 in a faster and accurate manner. People can use this application on their smart mobile devices. This automated system would assist healthcare workers as well, which ultimately reduces their workload and decreases the possibility of false detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的香水完成签到 ,获得积分10
1秒前
充电宝应助无奈苡采纳,获得10
2秒前
QQ发布了新的文献求助10
2秒前
李书荣发布了新的文献求助10
2秒前
科研通AI5应助美满的菠萝采纳,获得10
5秒前
完美世界应助son采纳,获得10
5秒前
Tianling完成签到,获得积分0
6秒前
Ww发布了新的文献求助10
10秒前
11秒前
NexusExplorer应助kevin采纳,获得10
12秒前
从容的巧曼完成签到,获得积分10
12秒前
StandardR完成签到 ,获得积分10
12秒前
yifan92完成签到,获得积分10
13秒前
13秒前
shaft完成签到,获得积分10
16秒前
Winks完成签到,获得积分10
16秒前
燕燕于飞完成签到,获得积分10
16秒前
舒心的幻天完成签到,获得积分10
17秒前
含蓄妖丽发布了新的文献求助10
17秒前
18秒前
QQ完成签到,获得积分10
19秒前
19秒前
sowhat完成签到 ,获得积分10
20秒前
luoman5656完成签到,获得积分10
24秒前
AMENG完成签到,获得积分10
24秒前
Peng0514完成签到,获得积分10
25秒前
25秒前
28秒前
沧笙踏歌应助carbon采纳,获得10
29秒前
zhengly23发布了新的文献求助10
29秒前
马某发布了新的文献求助10
30秒前
丰富的小甜瓜完成签到,获得积分10
30秒前
李琛完成签到,获得积分10
31秒前
MM完成签到,获得积分10
31秒前
木木三发布了新的文献求助10
32秒前
科研通AI2S应助Yolo采纳,获得10
32秒前
鸡块面发布了新的文献求助10
33秒前
hahahaweiwei完成签到,获得积分10
35秒前
温暖的问寒完成签到,获得积分10
36秒前
bsect发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268