亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning based Solution (Covi-DeteCT) Amidst COVID-19

计算机科学 人工智能 2019年冠状病毒病(COVID-19) 鉴定(生物学) 深度学习 可用的 机器学习 工作量 模式识别(心理学) 医学 病理 植物 疾病 万维网 传染病(医学专业) 生物 操作系统
作者
Kavita Pandey
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (5): 510-525
标识
DOI:10.2174/1573405618666220928145344
摘要

The whole world has been severely affected due to the COVID-19 pandemic. The rapid and large-scale spread has caused immense pressure on the medical sector hence increasing the chances of false detection due to human errors and mishandling of reports. At the time of outbreaks of COVID-19, there is a crucial shortage of test kits as well. Quick diagnostic testing has become one of the main challenges. For the detection of COVID-19, many Artificial Intelligence based methodologies have been proposed, a few had suggested integration of the model on a public usable platform, but none had executed this on a working application as per our knowledge.Keeping the above comprehension in mind, the objective is to provide an easy-to-use platform for COVID-19 identification. This work would be a contribution to the digitization of health facilities. This work is a fusion of deep learning classifiers and medical images to provide a speedy and accurate identification of the COVID-19 virus by analyzing the user's CT scan images of the lungs. It will assist healthcare workers in reducing their workload and decreasing the possibility of false detection.In this work, various models like Resnet50V2 and Resnet101V2, an adjusted rendition of ResNet101V2 with Feature Pyramid Network, have been applied for classifying the CT scan images into the categories: normal or COVID-19 positive.A detailed analysis of all three models' performances have been done on the SARS-CoV-2 dataset with various metrics like precision, recall, F1-score, ROC curve, etc. It was found that Resnet50V2 achieves an accuracy of 96.79%, whereas Resnet101V2 achieves an accuracy of 97.79%. An accuracy of 98.19% has been obtained by ResNet101V2 with Feature Pyramid Network. As Res- Net101V2 with Feature Pyramid Network is showing better results, thus, it is further incorporated into a working application that takes CT images as input from the user and feeds into the trained model and detects the presence of COVID-19 infection.A mobile application integrated with the deeper variant of ResNet, i.e., ResNet101V2 with FPN checks the presence of COVID-19 in a faster and accurate manner. People can use this application on their smart mobile devices. This automated system would assist healthcare workers as well, which ultimately reduces their workload and decreases the possibility of false detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
科研通AI6应助George采纳,获得10
19秒前
斯文败类应助Aurora采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
41秒前
Ade107发布了新的文献求助10
45秒前
49秒前
宓广缘完成签到 ,获得积分10
51秒前
应寒年完成签到 ,获得积分10
51秒前
Ava应助靓丽的珊珊采纳,获得10
1分钟前
1分钟前
1分钟前
carols发布了新的文献求助10
1分钟前
小马甲应助Ade107采纳,获得10
1分钟前
Thi发布了新的文献求助10
1分钟前
靓丽衫完成签到 ,获得积分10
1分钟前
qiuzhiri完成签到,获得积分10
1分钟前
小二郎应助George采纳,获得10
1分钟前
1分钟前
1分钟前
在水一方应助qiuzhiri采纳,获得10
1分钟前
Nightfall发布了新的文献求助10
1分钟前
善学以致用应助LALA采纳,获得10
1分钟前
包容远山完成签到,获得积分10
1分钟前
在水一方应助陈大仙采纳,获得10
1分钟前
科研通AI2S应助Nightfall采纳,获得10
1分钟前
George发布了新的文献求助10
1分钟前
爆米花应助无奈的靖仇采纳,获得10
1分钟前
1分钟前
1分钟前
LALA发布了新的文献求助10
1分钟前
夜安发布了新的文献求助10
1分钟前
陈大仙发布了新的文献求助10
1分钟前
乐乐应助LALA采纳,获得10
2分钟前
2分钟前
zhdhh发布了新的文献求助10
2分钟前
xun完成签到,获得积分20
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425