Enhanced artificial intelligence for electrochemical sensors in monitoring and removing of azo dyes and food colorant substances

柠檬黄 介电谱 支持向量机 检出限 微分脉冲伏安法 材料科学 循环伏安法 电化学 化学 电极 计算机科学 色谱法 人工智能 物理化学
作者
Yujia Wu,Arwa Abdulkreem AL‐Huqail,Zainab A. Farhan,Tamim Alkhalifah,Fahad Alturise,Hira Ali
出处
期刊:Food and Chemical Toxicology [Elsevier BV]
卷期号:169: 113398-113398 被引量:20
标识
DOI:10.1016/j.fct.2022.113398
摘要

It is necessary to determine whether synthetic dyes are present in food since their excessive use has detrimental effects on human health. For the simultaneous assessment of tartrazine and Patent Blue V, a novel electrochemical sensing platform was developed. As a result, two artificial azo colorants (Tartrazine and Patent Blue V) with toxic azo groups (-NN-) and other carcinogenic aromatic ring structures were examined. With a low limit of detection of 0.06 μM, a broad linear concentration range 0.09μM to 950μM, and a respectable recovery, scanning electron microscopy (SEM) was able to reveal the excellent sensing performance of the suggested electrode for patent blue V. The electrochemical performance of an electrode can be characterized using cyclic and differential pulse voltammetry, and electrochemical impedance spectroscopy. Moreover, the classification model was created by applying binary classification assessment using enhanced artificial intelligence comprises of support vector machine (SVM) and Genetic Algorithm (GA), respectively, a support vector machine and a genetic algorithm, which was then validated using the 50 dyes test set. The best binary logistic regression model has an accuracy of 83.2% and 81.1%, respectively, while the best SVM model has an accuracy of 90.3% for the training group of samples and 81.1% for the test group (RMSE = 0.644, R2 = 0.873, C = 205.41, and = 5.992). According to the findings, Cu-BTC MOF (copper (II)-benzene-1,3,5-tricarboxylate) has a crystal structure and is tightly packed with hierarchically porous nanomaterials, with each particle's edge measuring between 20 and 37 nm. The suggested electrochemical sensor's analytical performance is suitable for foods like jellies, condiments, soft drinks and candies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碳酸氢钠完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助50
刚刚
蓝莓芝士发布了新的文献求助10
1秒前
傅宣发布了新的文献求助10
1秒前
2秒前
2秒前
lmt完成签到,获得积分10
2秒前
yy完成签到,获得积分10
2秒前
顾矜应助柚子采纳,获得10
2秒前
Lun伦完成签到,获得积分20
3秒前
3秒前
BERT完成签到,获得积分10
3秒前
3秒前
开心初雪完成签到,获得积分10
3秒前
李健的小迷弟应助666JACS采纳,获得10
4秒前
Jessica发布了新的文献求助10
4秒前
4秒前
生椰拿铁完成签到,获得积分10
5秒前
无奈母鸡完成签到,获得积分10
5秒前
烟花应助七七采纳,获得10
6秒前
科研通AI6应助jyyg采纳,获得10
6秒前
6秒前
MZCCaiajie完成签到,获得积分10
6秒前
6秒前
7秒前
jhz发布了新的文献求助10
7秒前
lollonglol完成签到,获得积分10
7秒前
朝歌完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
火火完成签到 ,获得积分10
9秒前
干饭完成签到,获得积分10
9秒前
亲亲紫荆完成签到,获得积分10
9秒前
popo完成签到,获得积分10
9秒前
半生瓜发布了新的文献求助10
9秒前
Russula_Chu发布了新的文献求助200
9秒前
勤劳雁应助无奈母鸡采纳,获得10
9秒前
wyx发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475