已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhanced artificial intelligence for electrochemical sensors in monitoring and removing of azo dyes and food colorant substances

柠檬黄 介电谱 支持向量机 检出限 微分脉冲伏安法 材料科学 循环伏安法 电化学 化学 电极 计算机科学 色谱法 人工智能 物理化学
作者
Yujia Wu,Arwa Abdulkreem AL‐Huqail,Zainab A. Farhan,Tamim Alkhalifah,Fahad Alturise,Hira Ali
出处
期刊:Food and Chemical Toxicology [Elsevier]
卷期号:169: 113398-113398 被引量:20
标识
DOI:10.1016/j.fct.2022.113398
摘要

It is necessary to determine whether synthetic dyes are present in food since their excessive use has detrimental effects on human health. For the simultaneous assessment of tartrazine and Patent Blue V, a novel electrochemical sensing platform was developed. As a result, two artificial azo colorants (Tartrazine and Patent Blue V) with toxic azo groups (-NN-) and other carcinogenic aromatic ring structures were examined. With a low limit of detection of 0.06 μM, a broad linear concentration range 0.09μM to 950μM, and a respectable recovery, scanning electron microscopy (SEM) was able to reveal the excellent sensing performance of the suggested electrode for patent blue V. The electrochemical performance of an electrode can be characterized using cyclic and differential pulse voltammetry, and electrochemical impedance spectroscopy. Moreover, the classification model was created by applying binary classification assessment using enhanced artificial intelligence comprises of support vector machine (SVM) and Genetic Algorithm (GA), respectively, a support vector machine and a genetic algorithm, which was then validated using the 50 dyes test set. The best binary logistic regression model has an accuracy of 83.2% and 81.1%, respectively, while the best SVM model has an accuracy of 90.3% for the training group of samples and 81.1% for the test group (RMSE = 0.644, R2 = 0.873, C = 205.41, and = 5.992). According to the findings, Cu-BTC MOF (copper (II)-benzene-1,3,5-tricarboxylate) has a crystal structure and is tightly packed with hierarchically porous nanomaterials, with each particle's edge measuring between 20 and 37 nm. The suggested electrochemical sensor's analytical performance is suitable for foods like jellies, condiments, soft drinks and candies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得30
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
BUlKY完成签到 ,获得积分10
1秒前
隐形大米完成签到 ,获得积分10
3秒前
Jonathan发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
10秒前
ccl发布了新的文献求助10
11秒前
浮游应助过了年我就四岁采纳,获得10
13秒前
wop111发布了新的文献求助10
13秒前
myz发布了新的文献求助10
13秒前
14秒前
18秒前
蜡笔完成签到 ,获得积分10
19秒前
ccl完成签到,获得积分10
21秒前
26秒前
26秒前
积极盼山完成签到 ,获得积分10
29秒前
小涂同学发布了新的文献求助10
31秒前
vv关注了科研通微信公众号
31秒前
陶醉的谷丝完成签到 ,获得积分10
32秒前
CodeCraft应助myz采纳,获得10
33秒前
35秒前
36秒前
R.润完成签到,获得积分10
37秒前
独特从蓉发布了新的文献求助10
39秒前
Akim应助MRM采纳,获得10
40秒前
41秒前
小涂同学发布了新的文献求助10
41秒前
郑总完成签到 ,获得积分10
41秒前
Jonathan发布了新的文献求助10
43秒前
小蘑菇应助独特从蓉采纳,获得10
43秒前
44秒前
脆脆杯完成签到 ,获得积分10
44秒前
虚幻寄文完成签到 ,获得积分10
45秒前
清清泉水发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356