Enhanced artificial intelligence for electrochemical sensors in monitoring and removing of azo dyes and food colorant substances

柠檬黄 介电谱 支持向量机 检出限 微分脉冲伏安法 材料科学 循环伏安法 电化学 化学 电极 计算机科学 色谱法 人工智能 物理化学
作者
Yujia Wu,Arwa Abdulkreem AL‐Huqail,Zainab A. Farhan,Tamim Alkhalifah,Fahad Alturise,Hira Ali
出处
期刊:Food and Chemical Toxicology [Elsevier]
卷期号:169: 113398-113398 被引量:20
标识
DOI:10.1016/j.fct.2022.113398
摘要

It is necessary to determine whether synthetic dyes are present in food since their excessive use has detrimental effects on human health. For the simultaneous assessment of tartrazine and Patent Blue V, a novel electrochemical sensing platform was developed. As a result, two artificial azo colorants (Tartrazine and Patent Blue V) with toxic azo groups (-NN-) and other carcinogenic aromatic ring structures were examined. With a low limit of detection of 0.06 μM, a broad linear concentration range 0.09μM to 950μM, and a respectable recovery, scanning electron microscopy (SEM) was able to reveal the excellent sensing performance of the suggested electrode for patent blue V. The electrochemical performance of an electrode can be characterized using cyclic and differential pulse voltammetry, and electrochemical impedance spectroscopy. Moreover, the classification model was created by applying binary classification assessment using enhanced artificial intelligence comprises of support vector machine (SVM) and Genetic Algorithm (GA), respectively, a support vector machine and a genetic algorithm, which was then validated using the 50 dyes test set. The best binary logistic regression model has an accuracy of 83.2% and 81.1%, respectively, while the best SVM model has an accuracy of 90.3% for the training group of samples and 81.1% for the test group (RMSE = 0.644, R2 = 0.873, C = 205.41, and = 5.992). According to the findings, Cu-BTC MOF (copper (II)-benzene-1,3,5-tricarboxylate) has a crystal structure and is tightly packed with hierarchically porous nanomaterials, with each particle's edge measuring between 20 and 37 nm. The suggested electrochemical sensor's analytical performance is suitable for foods like jellies, condiments, soft drinks and candies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
hob发布了新的文献求助10
1秒前
xxhh33完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
快乐无价发布了新的文献求助10
3秒前
4秒前
ttz完成签到,获得积分10
5秒前
凉秋气爽完成签到,获得积分10
6秒前
8秒前
10秒前
lion完成签到 ,获得积分10
11秒前
12秒前
sunny完成签到,获得积分10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Hello应助大大大大管子采纳,获得10
15秒前
feiyan发布了新的文献求助10
16秒前
17秒前
Duan发布了新的文献求助10
17秒前
多多完成签到 ,获得积分10
18秒前
野田洋次郎完成签到,获得积分10
20秒前
彭于晏应助ttz采纳,获得10
20秒前
路灯下的小伙完成签到,获得积分10
20秒前
20秒前
飞快的尔容完成签到,获得积分10
21秒前
21秒前
李健的小迷弟应助嘟嘟采纳,获得10
23秒前
咻咻发布了新的文献求助10
23秒前
小懒完成签到,获得积分10
24秒前
兴奋芷完成签到,获得积分10
24秒前
25秒前
黎子发布了新的文献求助10
25秒前
yyy发布了新的文献求助10
26秒前
27秒前
量子星尘发布了新的文献求助10
30秒前
xm完成签到,获得积分10
30秒前
万能图书馆应助黎子采纳,获得10
30秒前
隐形曼青应助黎子采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775036
求助须知:如何正确求助?哪些是违规求助? 5621513
关于积分的说明 15437389
捐赠科研通 4907483
什么是DOI,文献DOI怎么找? 2640665
邀请新用户注册赠送积分活动 1588560
关于科研通互助平台的介绍 1543434