Enhanced artificial intelligence for electrochemical sensors in monitoring and removing of azo dyes and food colorant substances

柠檬黄 介电谱 支持向量机 检出限 微分脉冲伏安法 材料科学 循环伏安法 电化学 化学 电极 计算机科学 色谱法 人工智能 物理化学
作者
Yujia Wu,Arwa Abdulkreem AL‐Huqail,Zainab A. Farhan,Tamim Alkhalifah,Fahad Alturise,Hira Ali
出处
期刊:Food and Chemical Toxicology [Elsevier]
卷期号:169: 113398-113398 被引量:20
标识
DOI:10.1016/j.fct.2022.113398
摘要

It is necessary to determine whether synthetic dyes are present in food since their excessive use has detrimental effects on human health. For the simultaneous assessment of tartrazine and Patent Blue V, a novel electrochemical sensing platform was developed. As a result, two artificial azo colorants (Tartrazine and Patent Blue V) with toxic azo groups (-NN-) and other carcinogenic aromatic ring structures were examined. With a low limit of detection of 0.06 μM, a broad linear concentration range 0.09μM to 950μM, and a respectable recovery, scanning electron microscopy (SEM) was able to reveal the excellent sensing performance of the suggested electrode for patent blue V. The electrochemical performance of an electrode can be characterized using cyclic and differential pulse voltammetry, and electrochemical impedance spectroscopy. Moreover, the classification model was created by applying binary classification assessment using enhanced artificial intelligence comprises of support vector machine (SVM) and Genetic Algorithm (GA), respectively, a support vector machine and a genetic algorithm, which was then validated using the 50 dyes test set. The best binary logistic regression model has an accuracy of 83.2% and 81.1%, respectively, while the best SVM model has an accuracy of 90.3% for the training group of samples and 81.1% for the test group (RMSE = 0.644, R2 = 0.873, C = 205.41, and = 5.992). According to the findings, Cu-BTC MOF (copper (II)-benzene-1,3,5-tricarboxylate) has a crystal structure and is tightly packed with hierarchically porous nanomaterials, with each particle's edge measuring between 20 and 37 nm. The suggested electrochemical sensor's analytical performance is suitable for foods like jellies, condiments, soft drinks and candies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦尽甘来完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
冷酷严青发布了新的文献求助10
1秒前
大大杰完成签到,获得积分10
1秒前
Cyuan发布了新的文献求助10
2秒前
AZ完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
4秒前
D10发布了新的文献求助10
5秒前
mera发布了新的文献求助10
6秒前
TYMX完成签到,获得积分10
6秒前
QIUQIU完成签到,获得积分10
7秒前
科研通AI6应助Quincy采纳,获得10
7秒前
9秒前
9秒前
leptin发布了新的文献求助10
9秒前
zmx123123完成签到,获得积分10
9秒前
瑞rui发布了新的文献求助10
10秒前
10秒前
12秒前
JayWu完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
顾矜应助年华似水2024采纳,获得10
14秒前
yangYR应助刻苦向梦采纳,获得10
15秒前
yang发布了新的文献求助10
16秒前
文润宇完成签到,获得积分10
17秒前
KKKZ发布了新的文献求助10
18秒前
18秒前
18秒前
散热发布了新的文献求助10
18秒前
19秒前
科研通AI6应助多情山蝶采纳,获得10
20秒前
20秒前
冷酷严青发布了新的文献求助10
21秒前
苍蓝寸心完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943