Gravelly soil uniformity identification based on the optimized Mask R-CNN model

鉴定(生物学) 计算机科学 人工智能 模式识别(心理学) 植物 生物
作者
Xiaofeng Qu,Jiajun Wang,Xiaoling Wang,Yike Hu,Tuocheng Zeng,Tianwen Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:212: 118837-118837 被引量:16
标识
DOI:10.1016/j.eswa.2022.118837
摘要

The uniformity of gravelly soil has an important influence on compaction quality. The most important task to judge the uniformity of gravelly soil is to segment the gravels from the image. However, gravels are widely and densely distributed, and their particle size varies greatly, increasing segmentation difficulty. Among existing studies, research on rapid and quantitative judgment methods of gravelly soil uniformity remains scarce. To address the abovementioned issue, a gravelly soil uniformity identification based on the optimized Mask R-CNN model is proposed. The original Mask R-CNN only produces one combined mask of multiple overlapping gravels, which hinders postprocessing and uniformity calculation. To address this problem, separate masks for each gravel are generated for better parameter calculation. Then, according to the characteristics of the pixel image of a single mask, the calculation of static moment is deduced and simplified. Finally, the single mask dataset of the optimized Mask R-CNN and static distance theory are used to establish a quantitative evaluation index of gravelly soil uniformity, in which the uniformity coefficient (UC) and area ratio coefficient (ARC) are adopted. In addition, the convergence curves and the Average Precision (AP) of the ResNet101 and the ResNet50 backbones are compared, and the result proves the superiority of ResNet101 in gravel segmentation. Furthermore, three data enhancement methods (namely, rotation, mirroring, and brightness transformation) are adopted to improve the AP performance and result in a 2.32% increase. The application in a real large-scale hydropower project shows that the AP can reach 88.96%, and each calculation and analysis can be controlled within one minute, which shows the effectiveness, convenience and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助卡列林采纳,获得10
刚刚
拾新发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
小马甲应助如意的听云采纳,获得10
4秒前
iNk应助瞿人雄采纳,获得20
4秒前
5秒前
tzy发布了新的文献求助10
6秒前
星期八发布了新的文献求助10
7秒前
小小红帽发布了新的文献求助10
7秒前
傲娇以晴完成签到 ,获得积分10
8秒前
JamesPei应助xinxin采纳,获得10
8秒前
8秒前
风趣的老太应助bofu采纳,获得10
9秒前
脑洞疼应助魏家乐采纳,获得10
10秒前
天气好好发布了新的文献求助10
10秒前
yep发布了新的文献求助10
11秒前
lanmo完成签到,获得积分10
11秒前
11秒前
12秒前
CipherSage应助拾新采纳,获得10
13秒前
14秒前
wyy完成签到,获得积分10
15秒前
田様应助武雨寒采纳,获得10
15秒前
阿桂完成签到,获得积分10
15秒前
陈可可发布了新的文献求助10
15秒前
ljq发布了新的文献求助80
18秒前
就爱吃土豆完成签到,获得积分0
18秒前
香蕉觅云应助小小橙采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
TangWL完成签到 ,获得积分10
23秒前
23秒前
久9完成签到 ,获得积分10
24秒前
24秒前
huangyulin66应助羊羊杨采纳,获得10
24秒前
烟花应助澡雪采纳,获得10
25秒前
栀雨味完成签到,获得积分10
26秒前
111完成签到,获得积分20
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975814
求助须知:如何正确求助?哪些是违规求助? 3520123
关于积分的说明 11201020
捐赠科研通 3256502
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877523
科研通“疑难数据库(出版商)”最低求助积分说明 806417