Gravelly soil uniformity identification based on the optimized Mask R-CNN model

鉴定(生物学) 计算机科学 人工智能 模式识别(心理学) 植物 生物
作者
Xiaofeng Qu,Jiajun Wang,Xiaoling Wang,Yike Hu,Tuocheng Zeng,Tianwen Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118837-118837 被引量:16
标识
DOI:10.1016/j.eswa.2022.118837
摘要

The uniformity of gravelly soil has an important influence on compaction quality. The most important task to judge the uniformity of gravelly soil is to segment the gravels from the image. However, gravels are widely and densely distributed, and their particle size varies greatly, increasing segmentation difficulty. Among existing studies, research on rapid and quantitative judgment methods of gravelly soil uniformity remains scarce. To address the abovementioned issue, a gravelly soil uniformity identification based on the optimized Mask R-CNN model is proposed. The original Mask R-CNN only produces one combined mask of multiple overlapping gravels, which hinders postprocessing and uniformity calculation. To address this problem, separate masks for each gravel are generated for better parameter calculation. Then, according to the characteristics of the pixel image of a single mask, the calculation of static moment is deduced and simplified. Finally, the single mask dataset of the optimized Mask R-CNN and static distance theory are used to establish a quantitative evaluation index of gravelly soil uniformity, in which the uniformity coefficient (UC) and area ratio coefficient (ARC) are adopted. In addition, the convergence curves and the Average Precision (AP) of the ResNet101 and the ResNet50 backbones are compared, and the result proves the superiority of ResNet101 in gravel segmentation. Furthermore, three data enhancement methods (namely, rotation, mirroring, and brightness transformation) are adopted to improve the AP performance and result in a 2.32% increase. The application in a real large-scale hydropower project shows that the AP can reach 88.96%, and each calculation and analysis can be controlled within one minute, which shows the effectiveness, convenience and efficiency of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助zzzzlll采纳,获得10
刚刚
蓝莓芝士完成签到 ,获得积分10
刚刚
mengxiangrui完成签到,获得积分10
刚刚
善学以致用应助丸子王采纳,获得10
1秒前
123完成签到,获得积分10
1秒前
现代完成签到,获得积分10
1秒前
1秒前
打打应助炙热笑旋采纳,获得10
2秒前
2秒前
2秒前
恬恬完成签到,获得积分10
2秒前
周游发布了新的文献求助50
3秒前
醉熏的菲鹰完成签到 ,获得积分10
3秒前
lllllsy发布了新的文献求助10
3秒前
gk完成签到,获得积分0
3秒前
4秒前
4秒前
4秒前
娇气的笑蓝完成签到,获得积分10
4秒前
coke发布了新的文献求助50
4秒前
4秒前
华仔应助敬之采纳,获得10
4秒前
CBWKEYANTONG123完成签到,获得积分10
4秒前
大个应助牛肉汉堡采纳,获得10
4秒前
炸鸡完成签到,获得积分10
5秒前
纸上雪完成签到,获得积分10
5秒前
勤劳哈密瓜完成签到,获得积分10
6秒前
6秒前
luanzh完成签到,获得积分10
6秒前
PZ完成签到,获得积分10
6秒前
xiaoD完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
sntyc完成签到 ,获得积分10
8秒前
Ava应助于林渤采纳,获得10
8秒前
8秒前
小汪快跑发布了新的文献求助10
9秒前
海绵宝宝完成签到,获得积分10
9秒前
Maestro_S完成签到,获得积分0
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997