Gravelly soil uniformity identification based on the optimized Mask R-CNN model

鉴定(生物学) 计算机科学 人工智能 模式识别(心理学) 植物 生物
作者
Xiaofeng Qu,Jiajun Wang,Xiaoling Wang,Yike Hu,Tuocheng Zeng,Tianwen Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118837-118837 被引量:13
标识
DOI:10.1016/j.eswa.2022.118837
摘要

The uniformity of gravelly soil has an important influence on compaction quality. The most important task to judge the uniformity of gravelly soil is to segment the gravels from the image. However, gravels are widely and densely distributed, and their particle size varies greatly, increasing segmentation difficulty. Among existing studies, research on rapid and quantitative judgment methods of gravelly soil uniformity remains scarce. To address the abovementioned issue, a gravelly soil uniformity identification based on the optimized Mask R-CNN model is proposed. The original Mask R-CNN only produces one combined mask of multiple overlapping gravels, which hinders postprocessing and uniformity calculation. To address this problem, separate masks for each gravel are generated for better parameter calculation. Then, according to the characteristics of the pixel image of a single mask, the calculation of static moment is deduced and simplified. Finally, the single mask dataset of the optimized Mask R-CNN and static distance theory are used to establish a quantitative evaluation index of gravelly soil uniformity, in which the uniformity coefficient (UC) and area ratio coefficient (ARC) are adopted. In addition, the convergence curves and the Average Precision (AP) of the ResNet101 and the ResNet50 backbones are compared, and the result proves the superiority of ResNet101 in gravel segmentation. Furthermore, three data enhancement methods (namely, rotation, mirroring, and brightness transformation) are adopted to improve the AP performance and result in a 2.32% increase. The application in a real large-scale hydropower project shows that the AP can reach 88.96%, and each calculation and analysis can be controlled within one minute, which shows the effectiveness, convenience and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nt1119完成签到 ,获得积分10
刚刚
Cyrilla完成签到,获得积分10
3秒前
luoyukejing完成签到,获得积分10
6秒前
宛宛完成签到,获得积分10
7秒前
哈哈完成签到,获得积分10
8秒前
井小浩完成签到 ,获得积分10
11秒前
龙无赖完成签到 ,获得积分10
11秒前
fujun0095完成签到,获得积分10
12秒前
科研通AI2S应助unicornmed采纳,获得10
13秒前
yueLu完成签到 ,获得积分10
16秒前
roundtree完成签到 ,获得积分0
18秒前
狗狗完成签到 ,获得积分10
18秒前
znn完成签到 ,获得积分10
20秒前
bzdjsmw完成签到 ,获得积分10
25秒前
wei完成签到,获得积分10
26秒前
666星爷完成签到,获得积分10
27秒前
人参跳芭蕾完成签到 ,获得积分10
28秒前
郭远完成签到 ,获得积分10
28秒前
领导范儿应助科研通管家采纳,获得10
30秒前
马大翔应助科研通管家采纳,获得10
30秒前
酷酷的涵蕾完成签到 ,获得积分10
30秒前
chuhong完成签到 ,获得积分10
42秒前
阿甘完成签到,获得积分10
45秒前
shawn完成签到,获得积分10
48秒前
zodiac完成签到,获得积分10
49秒前
jie完成签到 ,获得积分10
51秒前
jjy完成签到,获得积分10
52秒前
Ivan完成签到 ,获得积分10
52秒前
大大怪完成签到 ,获得积分20
52秒前
会编程真是太好了完成签到 ,获得积分10
53秒前
只爱医学不爱你完成签到 ,获得积分10
57秒前
坚强的元瑶完成签到,获得积分10
57秒前
Cai完成签到,获得积分20
1分钟前
shlw完成签到,获得积分10
1分钟前
迪鸣完成签到,获得积分10
1分钟前
亚威完成签到,获得积分10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
小玲子完成签到 ,获得积分10
1分钟前
默默无闻完成签到,获得积分10
1分钟前
拓跋傲薇完成签到,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818724
关于积分的说明 7922021
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443