Gravelly soil uniformity identification based on the optimized Mask R-CNN model

鉴定(生物学) 计算机科学 人工智能 模式识别(心理学) 植物 生物
作者
Xiaofeng Qu,Jiajun Wang,Xiaoling Wang,Yike Hu,Tuocheng Zeng,Tianwen Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118837-118837 被引量:16
标识
DOI:10.1016/j.eswa.2022.118837
摘要

The uniformity of gravelly soil has an important influence on compaction quality. The most important task to judge the uniformity of gravelly soil is to segment the gravels from the image. However, gravels are widely and densely distributed, and their particle size varies greatly, increasing segmentation difficulty. Among existing studies, research on rapid and quantitative judgment methods of gravelly soil uniformity remains scarce. To address the abovementioned issue, a gravelly soil uniformity identification based on the optimized Mask R-CNN model is proposed. The original Mask R-CNN only produces one combined mask of multiple overlapping gravels, which hinders postprocessing and uniformity calculation. To address this problem, separate masks for each gravel are generated for better parameter calculation. Then, according to the characteristics of the pixel image of a single mask, the calculation of static moment is deduced and simplified. Finally, the single mask dataset of the optimized Mask R-CNN and static distance theory are used to establish a quantitative evaluation index of gravelly soil uniformity, in which the uniformity coefficient (UC) and area ratio coefficient (ARC) are adopted. In addition, the convergence curves and the Average Precision (AP) of the ResNet101 and the ResNet50 backbones are compared, and the result proves the superiority of ResNet101 in gravel segmentation. Furthermore, three data enhancement methods (namely, rotation, mirroring, and brightness transformation) are adopted to improve the AP performance and result in a 2.32% increase. The application in a real large-scale hydropower project shows that the AP can reach 88.96%, and each calculation and analysis can be controlled within one minute, which shows the effectiveness, convenience and efficiency of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行简完成签到,获得积分10
1秒前
revew666完成签到,获得积分10
1秒前
1秒前
思源应助紫菜采纳,获得10
2秒前
葛力发布了新的文献求助20
2秒前
tingting关注了科研通微信公众号
2秒前
2秒前
3秒前
爆螺钉完成签到,获得积分20
3秒前
所所应助风中莫英采纳,获得10
3秒前
4秒前
善学以致用应助Longy采纳,获得10
4秒前
活泼的花生完成签到,获得积分10
4秒前
zhang005on完成签到,获得积分10
4秒前
superspace完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助看不懂采纳,获得10
5秒前
5秒前
amanda完成签到,获得积分10
5秒前
miaomiao完成签到,获得积分10
6秒前
zzz完成签到,获得积分10
6秒前
dark灵发布了新的文献求助10
6秒前
13344完成签到 ,获得积分10
7秒前
yuxiaohua完成签到,获得积分10
7秒前
bittersugar发布了新的文献求助10
7秒前
7秒前
7秒前
liu完成签到 ,获得积分10
8秒前
993494543完成签到,获得积分10
8秒前
洪悦冰应助leinuo077采纳,获得10
8秒前
ZXL完成签到,获得积分20
9秒前
可爱的函函应助灯灯采纳,获得10
9秒前
知非发布了新的文献求助10
9秒前
9秒前
承欢完成签到,获得积分10
9秒前
九九发布了新的文献求助10
9秒前
滴滴滴完成签到,获得积分10
9秒前
9秒前
10秒前
高xuewen完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551