Gravelly soil uniformity identification based on the optimized Mask R-CNN model

鉴定(生物学) 计算机科学 人工智能 模式识别(心理学) 植物 生物
作者
Xiaofeng Qu,Jiajun Wang,Xiaoling Wang,Yike Hu,Tuocheng Zeng,Tianwen Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:212: 118837-118837 被引量:16
标识
DOI:10.1016/j.eswa.2022.118837
摘要

The uniformity of gravelly soil has an important influence on compaction quality. The most important task to judge the uniformity of gravelly soil is to segment the gravels from the image. However, gravels are widely and densely distributed, and their particle size varies greatly, increasing segmentation difficulty. Among existing studies, research on rapid and quantitative judgment methods of gravelly soil uniformity remains scarce. To address the abovementioned issue, a gravelly soil uniformity identification based on the optimized Mask R-CNN model is proposed. The original Mask R-CNN only produces one combined mask of multiple overlapping gravels, which hinders postprocessing and uniformity calculation. To address this problem, separate masks for each gravel are generated for better parameter calculation. Then, according to the characteristics of the pixel image of a single mask, the calculation of static moment is deduced and simplified. Finally, the single mask dataset of the optimized Mask R-CNN and static distance theory are used to establish a quantitative evaluation index of gravelly soil uniformity, in which the uniformity coefficient (UC) and area ratio coefficient (ARC) are adopted. In addition, the convergence curves and the Average Precision (AP) of the ResNet101 and the ResNet50 backbones are compared, and the result proves the superiority of ResNet101 in gravel segmentation. Furthermore, three data enhancement methods (namely, rotation, mirroring, and brightness transformation) are adopted to improve the AP performance and result in a 2.32% increase. The application in a real large-scale hydropower project shows that the AP can reach 88.96%, and each calculation and analysis can be controlled within one minute, which shows the effectiveness, convenience and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora.H完成签到,获得积分10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
duckspy发布了新的文献求助10
5秒前
5秒前
5秒前
xiaowan完成签到,获得积分10
6秒前
Terry完成签到,获得积分10
7秒前
张张张哈哈哈完成签到,获得积分10
7秒前
Research完成签到 ,获得积分10
7秒前
称心采枫完成签到 ,获得积分0
8秒前
8秒前
新新新新新发顶刊完成签到 ,获得积分10
9秒前
L3完成签到,获得积分10
10秒前
我是科研小能手完成签到,获得积分10
10秒前
风中的小丸子完成签到,获得积分10
11秒前
11秒前
时尚俊驰发布了新的文献求助10
12秒前
12秒前
12秒前
Grin完成签到,获得积分10
13秒前
周周完成签到,获得积分20
13秒前
14秒前
liufan完成签到 ,获得积分10
16秒前
guitarist完成签到 ,获得积分10
16秒前
饮汽水完成签到,获得积分10
16秒前
16秒前
yoyo20012623完成签到,获得积分10
17秒前
伦语发布了新的文献求助10
17秒前
韵苑完成签到,获得积分10
19秒前
烟花应助人生如梦采纳,获得10
19秒前
饮汽水发布了新的文献求助10
20秒前
先一完成签到 ,获得积分10
20秒前
21秒前
careyzhou发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022