Gravelly soil uniformity identification based on the optimized Mask R-CNN model

鉴定(生物学) 计算机科学 人工智能 模式识别(心理学) 植物 生物
作者
Xiaofeng Qu,Jiajun Wang,Xiaoling Wang,Yike Hu,Tuocheng Zeng,Tianwen Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:212: 118837-118837 被引量:16
标识
DOI:10.1016/j.eswa.2022.118837
摘要

The uniformity of gravelly soil has an important influence on compaction quality. The most important task to judge the uniformity of gravelly soil is to segment the gravels from the image. However, gravels are widely and densely distributed, and their particle size varies greatly, increasing segmentation difficulty. Among existing studies, research on rapid and quantitative judgment methods of gravelly soil uniformity remains scarce. To address the abovementioned issue, a gravelly soil uniformity identification based on the optimized Mask R-CNN model is proposed. The original Mask R-CNN only produces one combined mask of multiple overlapping gravels, which hinders postprocessing and uniformity calculation. To address this problem, separate masks for each gravel are generated for better parameter calculation. Then, according to the characteristics of the pixel image of a single mask, the calculation of static moment is deduced and simplified. Finally, the single mask dataset of the optimized Mask R-CNN and static distance theory are used to establish a quantitative evaluation index of gravelly soil uniformity, in which the uniformity coefficient (UC) and area ratio coefficient (ARC) are adopted. In addition, the convergence curves and the Average Precision (AP) of the ResNet101 and the ResNet50 backbones are compared, and the result proves the superiority of ResNet101 in gravel segmentation. Furthermore, three data enhancement methods (namely, rotation, mirroring, and brightness transformation) are adopted to improve the AP performance and result in a 2.32% increase. The application in a real large-scale hydropower project shows that the AP can reach 88.96%, and each calculation and analysis can be controlled within one minute, which shows the effectiveness, convenience and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱听歌的小霸王完成签到,获得积分10
刚刚
小七完成签到,获得积分10
1秒前
酷波er应助聪明的寄灵采纳,获得10
1秒前
zh发布了新的文献求助10
1秒前
ljhy发布了新的文献求助10
1秒前
独孤幻月96应助顾笑阳采纳,获得10
1秒前
个性的紫菜应助何休槊采纳,获得20
1秒前
2秒前
VDC应助不上课不行采纳,获得30
2秒前
2秒前
黑月完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
栗栗子完成签到,获得积分10
2秒前
友好的以旋完成签到 ,获得积分10
3秒前
3秒前
3秒前
xss发布了新的文献求助20
4秒前
4秒前
4秒前
PPD发布了新的文献求助10
5秒前
Stanley完成签到,获得积分20
5秒前
索隆完成签到,获得积分10
5秒前
卡卡584完成签到,获得积分10
5秒前
kuyng发布了新的文献求助20
5秒前
5秒前
6秒前
6秒前
cxxwins发布了新的文献求助10
6秒前
小马甲应助SHIKI采纳,获得10
7秒前
7秒前
桐桐应助Fiee采纳,获得10
7秒前
8秒前
gaozengxiang发布了新的文献求助10
9秒前
jacob258发布了新的文献求助10
9秒前
顾顾发布了新的文献求助10
9秒前
豆芽关注了科研通微信公众号
9秒前
10秒前
刘晓丹发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482