Graph Convolutional Network Aided Virtual Network Embedding for Internet of Thing

网络虚拟化 计算机科学 嵌入 互联网 图形 分布式计算 虚拟网络 虚拟化 核(代数) 理论计算机科学 计算机网络 人工智能 万维网 云计算 数学 组合数学 操作系统
作者
Sihan Ma,Haipeng Yao,Tianle Mai,Jingkai Yang,Wenji He,Kaipeng Xue,Mohsen Guizani
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 265-274 被引量:8
标识
DOI:10.1109/tnse.2022.3207205
摘要

The past few years have seen the dramatic adoption of the Internet of Things (IoT) in everyday life, from manufacturing to healthcare. With the emergence of various new Internet of Things applications, it is a challenging problem to meet the different QoS requirements of Internet of Things applications in shared substrate networks. Recently, Network Virtualization (NV) has attracted a large amount of attention from academia and industry. NV enables multiple virtual networks to coexist on the same substrate network, thus providing IoT users with customized end-to-end services. The main challenge of NV is the Virtual Network Embedding (VNE) problem, which refers to embed different virtual networks into one substrate network. Inspired by the recent success of graph convolutional network (GCN) in graph structured data processing, in this paper, we propose a GCN aided VNE algorithm. The GCN can extract high-order spatial structure information among substrate nodes through the convolution kernel. Considering that the training data of VNE has no label, we introduce the policy gradient algorithm to optimize the GCN model. In addition, three evaluation metrics are designed to evaluate the performance of the network embedding policy. Some simulations are implemented to evaluate our proposed algorithm in comparison to the other state-of-the-art solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qaq完成签到,获得积分10
1秒前
2秒前
3秒前
6秒前
8秒前
8秒前
田様应助干冷安采纳,获得30
9秒前
11秒前
那晚的风发布了新的文献求助10
11秒前
ding应助hangOn采纳,获得10
12秒前
xyz完成签到,获得积分10
14秒前
sfliufighting发布了新的文献求助10
14秒前
Devastating发布了新的文献求助10
14秒前
15秒前
16秒前
20秒前
22秒前
千寻发布了新的文献求助10
22秒前
超越完成签到,获得积分10
26秒前
科研通AI2S应助sfliufighting采纳,获得10
28秒前
Devastating完成签到,获得积分10
30秒前
wlj完成签到 ,获得积分10
34秒前
琼流星海完成签到 ,获得积分10
34秒前
爱蹦跶的废物完成签到,获得积分20
37秒前
纳米发布了新的文献求助10
39秒前
sfliufighting完成签到,获得积分20
43秒前
orixero应助keyanxiaobaishu采纳,获得10
44秒前
45秒前
47秒前
无花果应助Jere采纳,获得20
47秒前
和谐的鹤轩完成签到 ,获得积分10
48秒前
49秒前
50秒前
浮游应助EASA采纳,获得10
51秒前
zyf完成签到,获得积分10
52秒前
52秒前
李爱国应助纳米采纳,获得30
52秒前
lvbowen发布了新的文献求助10
52秒前
Nuyoah应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533