Predicting Vehicle Behavior Using Multi-task Ensemble Learning

计算机科学 快照(计算机存储) 学习迁移 人工智能 集成学习 任务(项目管理) 深度学习 机器学习 数据挖掘 大数据 全球定位系统 实时计算 数据库 电信 管理 经济
作者
Reza Khoshkangini,Peyman Sheikholharam Mashhadi,Daniel Tegnered,Jens Lundström,Thorsteinn Rögnvaldsson
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118716-118716 被引量:4
标识
DOI:10.1016/j.eswa.2022.118716
摘要

Vehicle utilization analysis is an essential tool for manufacturers to understand customer needs, improve equipment uptime, and to collect information for future vehicle and service development. Typically today, this behavioral modeling is done on high-resolution time-resolved data with features such as GPS position and fuel consumption. However, high-resolution data is costly to transfer and sensitive from a privacy perspective. Therefore, such data is typically only collected when the customer pays for extra services relying on that data. This motivated us to develop a multi-task ensemble approach to transfer knowledge from the high-resolution data and enable vehicle behavior prediction from low-resolution but high dimensional data that is aggregated over time in the vehicles. This study proposes a multi-task snapshot-stacked ensemble (MTSSE) deep neural network for vehicle behavior prediction by considering vehicles’ low-resolution operational life records. The multi-task ensemble approach utilizes the measurements to map the low-frequency vehicle usage to the vehicle behaviors defined from the high-resolution time-resolved data. Two data sources are integrated and used: high-resolution data called Dynafleet, and low-resolution so-called Logged Vehicle Data (LVD). The experimental results demonstrate the proposed approach’s effectiveness in predicting the vehicle behavior from low frequency data. With the suggested multi-task snapshot-stacked ensemble deep network, it is shown how low-resolution sensor data can highly contribute to predicting multiple vehicle behaviors simultaneously while using only one single training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
strings完成签到,获得积分10
刚刚
刚刚
小林完成签到,获得积分20
1秒前
jefeer完成签到,获得积分10
1秒前
NexusExplorer应助toxin采纳,获得10
2秒前
Eyrie2001发布了新的文献求助100
2秒前
2秒前
kg发布了新的文献求助10
3秒前
strings发布了新的文献求助20
3秒前
rainsy发布了新的文献求助10
3秒前
ShuangWeng应助tonyguo采纳,获得10
4秒前
4秒前
星辰大海应助冷酷的雁菡采纳,获得10
4秒前
yl发布了新的文献求助10
4秒前
研友_Z1x9ln发布了新的文献求助10
4秒前
传奇3应助jefeer采纳,获得10
6秒前
乾坤发布了新的文献求助10
6秒前
TEN110684完成签到,获得积分10
7秒前
7秒前
lafeierwxk完成签到,获得积分10
7秒前
8秒前
yang发布了新的文献求助10
8秒前
9秒前
大家好完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
13秒前
忐忑的蛋糕完成签到,获得积分10
13秒前
13秒前
1234发布了新的文献求助20
14秒前
zj发布了新的文献求助10
14秒前
乐乐应助rainsy采纳,获得10
14秒前
14秒前
dingxiaosong发布了新的文献求助10
15秒前
我要发文章完成签到 ,获得积分20
15秒前
elle发布了新的文献求助10
16秒前
小张完成签到 ,获得积分10
16秒前
cc发布了新的文献求助10
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152350
求助须知:如何正确求助?哪些是违规求助? 2803575
关于积分的说明 7854759
捐赠科研通 2461234
什么是DOI,文献DOI怎么找? 1310176
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765