Predicting Vehicle Behavior Using Multi-task Ensemble Learning

计算机科学 快照(计算机存储) 学习迁移 人工智能 集成学习 任务(项目管理) 深度学习 机器学习 数据挖掘 大数据 全球定位系统 实时计算 数据库 电信 管理 经济
作者
Reza Khoshkangini,Peyman Sheikholharam Mashhadi,Daniel Tegnered,Jens Lundström,Thorsteinn Rögnvaldsson
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118716-118716 被引量:4
标识
DOI:10.1016/j.eswa.2022.118716
摘要

Vehicle utilization analysis is an essential tool for manufacturers to understand customer needs, improve equipment uptime, and to collect information for future vehicle and service development. Typically today, this behavioral modeling is done on high-resolution time-resolved data with features such as GPS position and fuel consumption. However, high-resolution data is costly to transfer and sensitive from a privacy perspective. Therefore, such data is typically only collected when the customer pays for extra services relying on that data. This motivated us to develop a multi-task ensemble approach to transfer knowledge from the high-resolution data and enable vehicle behavior prediction from low-resolution but high dimensional data that is aggregated over time in the vehicles. This study proposes a multi-task snapshot-stacked ensemble (MTSSE) deep neural network for vehicle behavior prediction by considering vehicles’ low-resolution operational life records. The multi-task ensemble approach utilizes the measurements to map the low-frequency vehicle usage to the vehicle behaviors defined from the high-resolution time-resolved data. Two data sources are integrated and used: high-resolution data called Dynafleet, and low-resolution so-called Logged Vehicle Data (LVD). The experimental results demonstrate the proposed approach’s effectiveness in predicting the vehicle behavior from low frequency data. With the suggested multi-task snapshot-stacked ensemble deep network, it is shown how low-resolution sensor data can highly contribute to predicting multiple vehicle behaviors simultaneously while using only one single training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助俭朴夜雪采纳,获得10
刚刚
刚刚
頑皮燕姿完成签到,获得积分10
刚刚
刚刚
丁德乐可发布了新的文献求助10
1秒前
Minkslion完成签到,获得积分10
1秒前
於松完成签到,获得积分10
1秒前
1秒前
yyyy发布了新的文献求助10
2秒前
稳重无剑完成签到,获得积分10
3秒前
wuha完成签到,获得积分10
3秒前
3秒前
欢喜从霜完成签到,获得积分10
4秒前
Orange应助LiShin采纳,获得10
4秒前
4秒前
欣慰友梅完成签到,获得积分10
4秒前
5秒前
llllllll发布了新的文献求助10
5秒前
5秒前
5秒前
CC完成签到,获得积分10
5秒前
wwuu发布了新的文献求助10
6秒前
shenyanlei发布了新的文献求助10
6秒前
一汁蟹发布了新的文献求助20
7秒前
大个应助绿麦盲区采纳,获得10
7秒前
雨齐完成签到,获得积分10
7秒前
茶艺如何发布了新的文献求助10
7秒前
7秒前
kk完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
yyyy完成签到,获得积分10
9秒前
好好学习天天向上完成签到,获得积分10
9秒前
欣慰友梅发布了新的文献求助10
9秒前
9秒前
10秒前
Akim应助易伊澤采纳,获得10
10秒前
格局太小完成签到,获得积分10
10秒前
10秒前
尔云完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762