Research on Recognition Method of Chinese Cabbage Growth Periods Based on Swin Transformer and Transfer Learning

过度拟合 变压器 人工智能 计算机科学 学习迁移 机器学习 模式识别(心理学) 数学 人工神经网络 工程类 电压 电气工程
作者
Xin Chen,Yuexin Shi,Xiang Li
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:39 (4): 381-390
标识
DOI:10.13031/aea.15260
摘要

Highlights To the best of our knowledge, this study was the first intelligent recognition for Chinese cabbage growth period and proposed the Swin Transformer+1 model. If the four growth periods were considered, the recognition accuracy rate of the model on the test set was 96.15%. If the transition periods of Chinese cabbage growth were considered, the model recognition accuracy rate was 97.17%. Experiments showed that the Swin Transformer+1 model was robust and could be applied in real agricultural production. Abstract. In order to facilitate agricultural management and improve the quality and yield of Chinese cabbage, it is necessary to intelligently identify the growth periods of Chinese cabbage. In this study, a transfer learning-based recognition model for Chinese cabbage growth periods was proposed, which could identify four growth periods of Chinese cabbage: “germination and seedling period,” “rosette period,” “heading period,” and “dormant period.” The data set of Chinese cabbage growth periods was built. The recognition model was named Swin Transformer+1, using Swin Transformer as the backbone network to extract image features, and a fully connected layer as the classifier. To optimize the model, we used Letterbox instead of Stretching to resize the image, used Focal Loss instead of Cross Entropy Loss as the loss function, and used Stochastic Weight Averaging instead of Adam as the optimizer. Transfer learning was used for training, which could solve the problems of overfitting and underfitting when training deep network with a small data set. We verified the effectiveness of the above improved methods through ablation experiments. Experiments showed that the Swin Transformer+1 model had a high recognition accuracy rate. If only the four growth periods were considered, the recognition accuracy rate was 96.15%. If the transition periods between two growth periods of Chinese cabbage were considered, the recognition accuracy rate was 97.17%. The model had strong robustness. It maintained a high recognition accuracy rate when the images in the test set were augmented. In general, Swin Transformer+1 model has high application value in actual agricultural production scenarios. Keywords: Chinese cabbage growth period, Deep learning, Image recognition, Swin transformer, Transfer learning
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助太叔夜南采纳,获得10
刚刚
刚刚
顾柔柔发布了新的文献求助10
刚刚
刚刚
WeiBao发布了新的文献求助30
刚刚
刚刚
蛋挞完成签到,获得积分10
2秒前
REN完成签到,获得积分10
2秒前
4秒前
Matthew_G完成签到,获得积分10
4秒前
5秒前
5秒前
haoxi发布了新的文献求助10
5秒前
研友_X89o6n完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
迷路芝麻完成签到,获得积分10
6秒前
如晴发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Denny完成签到,获得积分10
7秒前
橘涂完成签到 ,获得积分10
8秒前
明理的天蓝完成签到,获得积分10
8秒前
8秒前
9秒前
乐观忆灵应助月亮采纳,获得20
9秒前
王芋圆完成签到,获得积分10
9秒前
小王同学完成签到,获得积分10
9秒前
天冷了hhhdh完成签到,获得积分10
9秒前
9秒前
嗯呢发布了新的文献求助10
10秒前
ice完成签到,获得积分10
10秒前
温酒筚篥发布了新的文献求助10
10秒前
10秒前
吉吉完成签到,获得积分10
10秒前
11秒前
LEEKUST完成签到,获得积分10
11秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121907
求助须知:如何正确求助?哪些是违规求助? 2772301
关于积分的说明 7712917
捐赠科研通 2427747
什么是DOI,文献DOI怎么找? 1289466
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169