亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning based on SPECT/CT to differentiate bone metastasis and benign bone lesions in lung malignancy patients

医学 骨转移 接收机工作特性 放射科 恶性肿瘤 肺癌 无线电技术 转移 核医学 癌症 病理 内科学
作者
Huili Wang,Yiru Chen,Jianfeng Qiu,Jindong Xie,Weizhao Lu,Junchi Ma,Mingsheng Jia
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2578-2588 被引量:4
标识
DOI:10.1002/mp.16839
摘要

Abstract Background Bone metastasis is a common event in lung cancer progression. Early diagnosis of lung malignant tumor with bone metastasis is crucial for selecting effective treatment strategies. However, 14.3% of patients are still difficult to diagnose after SPECT/CT examination. Purpose Machine learning analysis of [ 99m Tc]‐methylene diphosphate ( 99m Tc‐MDP) SPECT/CT scans to distinguish bone metastases from benign bone lesions in patients with lung cancer. Methods One hundred forty‐one patients (69 with bone metastases and 72 with benign bone lesions) were randomly assigned to the training group or testing group in a 7:3 ratio. Lesions were manually delineated using ITK‐SNAP, and 944 radiomics features were extracted from SPECT and CT images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomics features in the training set, and the single/bimodal radiomics models were established based on support vector machine (SVM). To further optimize the model, the best bimodal radiomics features were combined with clinical features to establish an integrated Radiomics‐clinical model. The diagnostic performance of models was evaluated using receiver operating characteristic (ROC) curve and confusion matrix, and performance differences between models were evaluated using the Delong test. Results The optimal radiomics model comprised of structural modality (CT) and metabolic modality (SPECT), with an area under curve (AUC) of 0.919 and 0.907 for the training and testing set, respectively. The integrated model, which combined SPECT, CT, and two clinical features, exhibited satisfactory differentiation in the training and testing set, with AUC of 0.939 and 0.925, respectively. Conclusions The machine learning can effectively differentiate between bone metastases and benign bone lesions. The Radiomics‐clinical integrated model demonstrated the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴宵完成签到,获得积分10
6秒前
9秒前
科研通AI5应助天空之国采纳,获得10
9秒前
NexusExplorer应助bingbing34采纳,获得10
12秒前
20秒前
22秒前
纪震宇发布了新的文献求助10
26秒前
bingbing34发布了新的文献求助10
27秒前
DrLee完成签到,获得积分10
30秒前
桐桐应助纪震宇采纳,获得10
31秒前
清风完成签到 ,获得积分10
37秒前
38秒前
梦华老师发布了新的文献求助10
43秒前
堆起的石头完成签到,获得积分10
47秒前
48秒前
妖精完成签到,获得积分10
51秒前
妖精发布了新的文献求助10
54秒前
慌慌张张的张张完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
TJY发布了新的文献求助100
1分钟前
科研通AI5应助dd采纳,获得30
1分钟前
1分钟前
领导范儿应助bingbing34采纳,获得10
1分钟前
爱静静应助VDC采纳,获得10
1分钟前
1分钟前
gqqq发布了新的文献求助10
1分钟前
darkpigx完成签到,获得积分10
1分钟前
linnett完成签到,获得积分10
1分钟前
南山荣熙发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
冷静茉莉完成签到 ,获得积分10
1分钟前
困困发布了新的文献求助10
1分钟前
bingbing34发布了新的文献求助10
1分钟前
docyuchi发布了新的文献求助10
1分钟前
南山荣熙完成签到,获得积分10
1分钟前
AnJaShua完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121546
关于积分的说明 9347835
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273