抗血小板
热电效应
材料科学
热电材料
卤化物
离子
塞贝克系数
凝聚态物理
钙钛矿(结构)
热导率
工程物理
纳米技术
热力学
结晶学
化学
无机化学
复合材料
物理
氮化物
有机化学
图层(电子)
作者
Dan Han,Bonan Zhu,Zenghua Cai,Kieran B. Spooner,Stefan S. Rudel,Wolfgang Schnick,Thomas Bein,David O. Scanlon,H. Ebert
出处
期刊:Matter
[Elsevier]
日期:2023-11-15
卷期号:7 (1): 158-174
被引量:4
标识
DOI:10.1016/j.matt.2023.10.022
摘要
Summary
The thermoelectric performance of existing perovskites lags far behind that of state-of-the-art thermoelectric materials such as SnSe. Despite halide perovskites showing promising thermoelectric properties, namely, high Seebeck coefficients and ultralow thermal conductivities, their thermoelectric performance is significantly restricted by low electrical conductivities. Here, we explore new multi-anion antiperovskites X6NFSn2 (X = Ca, Sr, and Ba) via B-site anion mutation in antiperovskite and global structure searches and demonstrate their phase stability by first-principles calculations. Ca6NFSn2 and Sr6NFSn2 exhibit decent Seebeck coefficients and ultralow lattice thermal conductivities (<1 W m−1 K−1). Notably, Ca6NFSn2 and Sr6NFSn2 show remarkably larger electrical conductivities compared to the halide perovskite CsSnI3. The combined superior electrical and thermal properties of Ca6NFSn2 and Sr6NFSn2 lead to high thermoelectric figures of merit (ZTs) of ∼1.9 and ∼2.3 at high temperatures. Our exploration of multi-anion antiperovskites X6NFSn2 (X = Ca, Sr) realizes the "phonon-glass, electron-crystal" concept within the antiperovskite structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI