溶剂化
电负性
化学
人工神经网络
隐溶剂化
离子键合
均衡(音频)
离子
水溶液
极地的
物理化学
物理
有机化学
机器学习
数学
量子力学
计算机科学
算法
解码方法
作者
Sergei F. Vyboishchikov
标识
DOI:10.1021/acs.jcim.3c00922
摘要
I propose a dense Neural Network for evaluation of solvation free energies ΔG°solv for molecules and ions in water and nonaqueous solvents, Easy Solvation Energy with Electronegativity Equalization charges and Dense Neural Network (ESE-EE-DNN). As input features, it uses the Conductor-like Screening Model (COSMO) electrostatic energy, atomic cavity surface areas, total cavity volume, and induced surface charges. For the COSMO calculation, electronegativity-equalization atomic charges are employed. ESE-EE-DNN exhibits fairly high accuracy, similar or even superior to that of mainstream density functional theory-based methods. For neutral solutes in water, polar protic, polar aprotic, and nonpolar solvents, ESE-EE-DNN yields a root-mean-square error (RMSE) of 1.25, 1.36, 0.70, and 0.71 kcal/mol, respectively. ESE-EE-DNN is particularly advantageous for ionic solutes, with an RMSE of 2.82 and 1.42 kcal/mol for aqueous and nonaqueous ion solutions, correspondingly. ESE-EE-DNN is very efficient due to a fast evaluation of the electronegativity-equalization charges.
科研通智能强力驱动
Strongly Powered by AbleSci AI