Reimagining China-US Relations Prediction: A Multi-modal, Knowledge-Driven Approach with KDSCINet

可解释性 计算机科学 关系(数据库) 人工智能 数据挖掘 时间序列 人工神经网络 机器学习
作者
Rui Zhou,Jialin Hao,Ying Zou,Yushi Zhu,Chi Zhang,Fusheng Jin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 317-331
标识
DOI:10.1007/978-981-99-8082-6_25
摘要

Statistical models and data driven models have achieved remarkable results in international relation forecasting. However, most of these models have several common drawbacks, including (i) rely on large amounts of expert knowledge, limiting the objectivity, applicability, usability, interpretability and sustainability of models, (ii) can only use structured unimodal data or cannot make full use of multimodal data. To address these two problems, we proposed a Knowledge-Driven neural network architecture that conducts Sample Convolution and Interaction, named KDSCINet, for China-US relation forecasting. Firstly, we filter events pertaining to China-US relations from the GDELT database. Then, we extract text descriptions and images from news articles and utilize the fine-tuned pre-trained model MKGformer to obtain embeddings. Finally we connect textual and image embeddings of the event with the structured event value in GDELT database through multi-head attention mechanism to generate time series data, which is then feed into KDSCINet for China-US relation forecasting. Our approach enhances prediction accuracy by establishing a knowledge-driven temporal forecasting model that combines structured data, textual data and image data. Experiments demonstrate that KDSCINet can (i) outperform state-of-the-art methods on time series forecasting problem in the area of international relation forecasting, (ii) improving forecasting performance through the use of multimodal knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三寒鸦完成签到,获得积分10
刚刚
小木棉发布了新的文献求助10
刚刚
刚刚
少年郎完成签到,获得积分20
1秒前
CipherSage应助123lura采纳,获得10
1秒前
七七完成签到,获得积分10
1秒前
科研通AI2S应助小余采纳,获得10
1秒前
苹果骑士完成签到,获得积分10
1秒前
1秒前
shi hui应助jbhb采纳,获得10
2秒前
2秒前
2秒前
JUSTs0so发布了新的文献求助10
2秒前
长夜变清早完成签到,获得积分10
3秒前
4秒前
4秒前
otaro发布了新的文献求助10
5秒前
yinbin完成签到,获得积分10
5秒前
5秒前
独木舟发布了新的文献求助10
5秒前
白衣未央发布了新的文献求助10
5秒前
脑洞疼应助现实的曼荷采纳,获得10
7秒前
7秒前
轩辕德地发布了新的文献求助10
7秒前
三九完成签到,获得积分10
8秒前
orixero应助少年郎采纳,获得10
8秒前
三金发布了新的文献求助10
8秒前
kuku发布了新的文献求助10
8秒前
土豆你个西红柿完成签到 ,获得积分10
9秒前
小余完成签到,获得积分10
9秒前
10秒前
sherry完成签到 ,获得积分10
10秒前
搜集达人应助陈佳琪采纳,获得30
10秒前
xiaohan完成签到,获得积分10
10秒前
独木舟完成签到,获得积分10
10秒前
可爱的函函应助无辜洋葱采纳,获得10
11秒前
完美世界应助瘦瘦的背包采纳,获得10
11秒前
小木棉完成签到,获得积分10
11秒前
威武诺言发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762