Reimagining China-US Relations Prediction: A Multi-modal, Knowledge-Driven Approach with KDSCINet

可解释性 计算机科学 关系(数据库) 人工智能 数据挖掘 时间序列 人工神经网络 机器学习
作者
Rui Zhou,Jialin Hao,Ying Zou,Yushi Zhu,Chi Zhang,Fusheng Jin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 317-331
标识
DOI:10.1007/978-981-99-8082-6_25
摘要

Statistical models and data driven models have achieved remarkable results in international relation forecasting. However, most of these models have several common drawbacks, including (i) rely on large amounts of expert knowledge, limiting the objectivity, applicability, usability, interpretability and sustainability of models, (ii) can only use structured unimodal data or cannot make full use of multimodal data. To address these two problems, we proposed a Knowledge-Driven neural network architecture that conducts Sample Convolution and Interaction, named KDSCINet, for China-US relation forecasting. Firstly, we filter events pertaining to China-US relations from the GDELT database. Then, we extract text descriptions and images from news articles and utilize the fine-tuned pre-trained model MKGformer to obtain embeddings. Finally we connect textual and image embeddings of the event with the structured event value in GDELT database through multi-head attention mechanism to generate time series data, which is then feed into KDSCINet for China-US relation forecasting. Our approach enhances prediction accuracy by establishing a knowledge-driven temporal forecasting model that combines structured data, textual data and image data. Experiments demonstrate that KDSCINet can (i) outperform state-of-the-art methods on time series forecasting problem in the area of international relation forecasting, (ii) improving forecasting performance through the use of multimodal knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iwhisper发布了新的文献求助10
1秒前
666完成签到,获得积分20
1秒前
1秒前
典雅书翠完成签到,获得积分10
2秒前
sws发布了新的文献求助10
2秒前
搜集达人应助Aprial采纳,获得10
2秒前
共享精神应助lincsh采纳,获得10
2秒前
SciGPT应助谦让的樱采纳,获得10
2秒前
羽言发布了新的文献求助10
2秒前
姜一完成签到,获得积分10
3秒前
11完成签到,获得积分10
3秒前
鲤鱼梦柳完成签到 ,获得积分10
3秒前
高兴的巨人完成签到 ,获得积分10
3秒前
研友_Z1eDgZ发布了新的文献求助10
4秒前
666发布了新的文献求助10
4秒前
pluto应助犹豫的灵萱采纳,获得10
4秒前
不配.应助绝世镜天采纳,获得50
4秒前
蓝蜗牛完成签到,获得积分10
5秒前
FashionBoy应助wddfz采纳,获得10
6秒前
为溪完成签到,获得积分10
8秒前
红烧茄子完成签到,获得积分10
9秒前
Singularity应助happy杨采纳,获得10
10秒前
星辰大海应助SEAMUS采纳,获得10
10秒前
10秒前
纸包鱼发布了新的文献求助10
10秒前
852应助无心的土豆采纳,获得10
13秒前
14秒前
李爱国应助腰酸的小番茄采纳,获得10
14秒前
小石完成签到,获得积分20
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
Lucas应助如意道消采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
fhbc发布了新的文献求助10
15秒前
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866