Reimagining China-US Relations Prediction: A Multi-modal, Knowledge-Driven Approach with KDSCINet

可解释性 计算机科学 关系(数据库) 人工智能 数据挖掘 时间序列 人工神经网络 机器学习
作者
Rui Zhou,Jialin Hao,Ying Zou,Yushi Zhu,Chi Zhang,Fusheng Jin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 317-331
标识
DOI:10.1007/978-981-99-8082-6_25
摘要

Statistical models and data driven models have achieved remarkable results in international relation forecasting. However, most of these models have several common drawbacks, including (i) rely on large amounts of expert knowledge, limiting the objectivity, applicability, usability, interpretability and sustainability of models, (ii) can only use structured unimodal data or cannot make full use of multimodal data. To address these two problems, we proposed a Knowledge-Driven neural network architecture that conducts Sample Convolution and Interaction, named KDSCINet, for China-US relation forecasting. Firstly, we filter events pertaining to China-US relations from the GDELT database. Then, we extract text descriptions and images from news articles and utilize the fine-tuned pre-trained model MKGformer to obtain embeddings. Finally we connect textual and image embeddings of the event with the structured event value in GDELT database through multi-head attention mechanism to generate time series data, which is then feed into KDSCINet for China-US relation forecasting. Our approach enhances prediction accuracy by establishing a knowledge-driven temporal forecasting model that combines structured data, textual data and image data. Experiments demonstrate that KDSCINet can (i) outperform state-of-the-art methods on time series forecasting problem in the area of international relation forecasting, (ii) improving forecasting performance through the use of multimodal knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Libra完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
谢佩奇发布了新的文献求助10
5秒前
chensongyu完成签到,获得积分10
5秒前
凌儿响叮当完成签到 ,获得积分10
7秒前
斯文败类应助重要谷冬采纳,获得10
7秒前
Akim应助甜筒采纳,获得10
7秒前
feimengxia完成签到 ,获得积分10
8秒前
Akim应助茂飞采纳,获得10
10秒前
10秒前
12秒前
13秒前
充电宝应助xia采纳,获得10
14秒前
谢佩奇完成签到,获得积分10
17秒前
Jackie发布了新的文献求助10
17秒前
研友_LJGXgn完成签到,获得积分10
18秒前
云海老发布了新的文献求助10
20秒前
20秒前
Steve完成签到,获得积分20
22秒前
23秒前
24秒前
27秒前
27秒前
27秒前
李爱国应助动听千风采纳,获得10
27秒前
马师发布了新的文献求助10
28秒前
Hello应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得20
30秒前
xuh发布了新的文献求助10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
萧水白应助科研通管家采纳,获得10
30秒前
30秒前
ding应助科研通管家采纳,获得10
30秒前
31秒前
重要谷冬发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019