过电位
催化作用
法拉第效率
电化学
材料科学
吸附
拉曼光谱
金属
化学工程
选择性
无机化学
化学
电极
物理化学
有机化学
冶金
物理
光学
工程类
作者
Liang Fu,Zhenping Qu,Lei Zhou,Yue Ding
标识
DOI:10.1016/j.apcatb.2023.123170
摘要
Interface engineering is demonstrated to lead to significant improvement in the catalytic performance for electrochemical CO2 reduction reactions (CO2RR). In this work, we demonstrate a heterogeneous In(OH)3-Ag interface catalyst in which the appropriate In(OH)3 clusters modified on metal Ag nanoparticles surface greatly improves the CO selectivity in CO2RR, realizing a CO faradaic efficiency (FECO) of 93% at -0.7 V vs. RHE. The performance enhancement is attributed to the preferentially CO2 adsorption and activation by the In(OH)3-Ag interface sites. In situ Raman spectroscopy reveals that the formation of In(OH)3-Ag interface sites is significantly favorable for the generation of key *CO2− intermediate at low overpotential. Further theoretical calculation confirms that the In(OH)3-Ag interface could enhance the adsorption of *COOH species on catalyst by means of tailoring the surface properties and electronic structures. This work shows that hydroxide-metal interface engineering is a promising pathway to regulate the activity for selective CO2RR properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI