Single-Cell Spatial Analysis of Histopathology Images for Survival Prediction via Graph Attention Network

可解释性 计算机科学 间质细胞 人工智能 图形 机器学习 病理 理论计算机科学 医学
作者
Zhe Li,Yuming Jiang,Leon Liu,Yong Xia,Ruijiang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 114-124 被引量:1
标识
DOI:10.1007/978-3-031-47076-9_12
摘要

The tumor microenvironment is a complex ecosystem consisting of various immune and stromal cells in addition to neoplastic cells. The spatial interaction and organization of these cells play a critical role in tumor progression. Single-cell analysis of histopathology images offers an intrinsic advantage over traditional patch-based approach by providing fine-grained cellular information. However, existing studies do not perform explicit cell classification, and therefore still suffer from limited interpretability and lack biological relevance, which may negatively affect the performance for clinical outcome prediction. To address these challenges, we propose a cell-level contextual learning approach to explicitly capture the major cell types and their spatial interaction in the tumor microenvironment. To do this, we first segmented and classified each cell into tumor cells, lymphocytes, fibroblasts, macrophages, neutrophils, and other nonmalignant cells on histopathology images. Given this single-cell map, we constructed a graph and trained a graph attention network to learn the cell-level contextual features for survival prediction. Extensive experiments demonstrate that our model consistently outperform existing patch-based and cell graph-based approaches in two independent datasets. Further, we used the feature attribution method to discover distinct spatial patterns that are associated with prognosis, leading to biologically meaningful and interpretable results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼哥完成签到,获得积分10
1秒前
1秒前
小吴完成签到,获得积分10
1秒前
丰都麻辣鸡完成签到,获得积分10
1秒前
古灵不精只怪完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
HCT发布了新的文献求助10
3秒前
科研通AI6应助炙热的平灵采纳,获得10
3秒前
3秒前
汤姆猫发布了新的文献求助10
5秒前
杯中冰糖茶完成签到,获得积分10
5秒前
李咸咸123发布了新的文献求助10
5秒前
奋斗VS发布了新的文献求助10
5秒前
Lydia发布了新的文献求助50
5秒前
不装的七彩猪完成签到,获得积分10
5秒前
香蕉诗蕊应助lzh采纳,获得10
6秒前
L112233发布了新的文献求助10
6秒前
飞快的书蕾完成签到,获得积分10
7秒前
kuichen发布了新的文献求助10
7秒前
8秒前
周艳鸿发布了新的文献求助10
9秒前
小豆发布了新的文献求助10
9秒前
10秒前
10秒前
yu完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
FashionBoy应助汤姆猫采纳,获得10
11秒前
科目三应助忧虑的乘云采纳,获得10
11秒前
Orange应助汤姆猫采纳,获得10
12秒前
12秒前
科研通AI6应助天天采纳,获得30
12秒前
无花果应助天天采纳,获得10
13秒前
123应助天天采纳,获得10
13秒前
在水一方应助laurel采纳,获得10
13秒前
失望的山谷完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593712
求助须知:如何正确求助?哪些是违规求助? 4679550
关于积分的说明 14810466
捐赠科研通 4644670
什么是DOI,文献DOI怎么找? 2534601
邀请新用户注册赠送积分活动 1502645
关于科研通互助平台的介绍 1469366