过电位
钴
析氧
材料科学
限制电流
双功能
纳米棒
兴奋剂
镍
催化作用
化学工程
纳米技术
无机化学
化学
电化学
光电子学
电极
冶金
物理化学
生物化学
工程类
作者
Xiaoying Zheng,Alonso Moreno Zuria,Mohamed Mohamedi
标识
DOI:10.1002/admt.202301142
摘要
Abstract The rational design of the electrocatalysts is paramount to alleviating the global energy and environment crisis. Despite a bright future of MnO 2 shown in energy storage and conversion, the intrinsic low electrical conductivity glooms its application in electrocatalytic reactions like oxygen reduction/evolution reactions (ORR/OER). The doping strategy is applied to equip the self‐supported MnO 2 with enhanced ORR/OER and zinc‐air battery performance. In this work, a class of free‐standing MnO 2 nanorods arrays on carbon paper‐doped with either cobalt or nickel cations are engineered through a simple hydrothermal method. The substitutional doping by Co or Ni that partly replaces the Mn ions in the [MnO 6 ] octahedra brings about the Jahn–Teller distortion that exhibits excellent catalytic performance for ORR and OER. Indeed, the ORR performance reveals that the doping resulted in more positive half‐wave potential (by >20 mV), higher limiting current densities, and an electron transfer number close to four. As for the OER, the doping not only decreases the overpotential at 10 mA cm −2 but also brings about an enhancement in the current density at 1.76 V six times greater than with the undoped MnO 2 catalyst. An optimal concentration of 0.25 in the molar ratio Co/Mn or Ni/Mn is discovered based on the ORR/OER bifunctionality. Homemade rechargeable Zn–air aqueous batteries assembled with doped MnO 2 deliver higher peak power density, higher specific capacity, lower charge voltage, lower charge/discharge voltage, and robust stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI