FL2DP: Privacy-Preserving Federated Learning Via Differential Privacy for Artificial IoT

差别隐私 计算机科学 上传 洗牌 身份(音乐) 噪音(视频) 人为噪声 方案(数学) 信息隐私 理论计算机科学 计算机安全 人工智能 数据挖掘 计算机网络 数学 万维网 数学分析 频道(广播) 物理 发射机 声学 图像(数学) 程序设计语言
作者
Chen Gu,Xuande Cui,Xiaoling Zhu,Donghui Hu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:4
标识
DOI:10.1109/tii.2023.3331726
摘要

Federated learning (FL) is a promising paradigm for collaboratively training networks on distributed clients while retaining data locally. Recent work has shown that personal data can be recovered even though clients only send gradients to the server. To against the gradient leakage issue, differential privacy (DP)-based solutions are proposed to protect data privacy by adding noise to the gradient before sending it to the server. However, the introduced noise affects the training efficiency of local clients, resulting in low model accuracy. Moreover, the identity privacy of clients has not been seriously considered in FL. In this article, we propose FL2DP, a privacy-preserving scheme focusing on protecting the data privacy as well as the identity privacy of clients. Different from the current schemes that add noise sampled from the Gaussian or Laplace distribution, in our scheme the noise is added to the gradient based on the exponential mechanism to achieve high training efficiency. Then, clients upload the perturbed gradients to a shuffler, which reassigns these gradients with different identities. We give a formal privacy definition called gradient indistinguishability to provide strict unlinkability for gradients shuffle. We propose a new gradient shuffling mechanism by adapting the DP-based exponential mechanism to satisfy gradient indistinguishability using the designed utility function. In this case, an attacker cannot infer the real identity of the client via the shuffled gradient. We conduct extensive experiments on two real-world datasets, and the results demonstrate the effectiveness of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助烩面大师采纳,获得10
1秒前
1秒前
1秒前
1秒前
小马过河发布了新的文献求助10
2秒前
ding应助今年我必胖20斤采纳,获得10
2秒前
3秒前
3秒前
小林发布了新的文献求助30
4秒前
4秒前
失眠烨华发布了新的文献求助10
4秒前
weiyu_u发布了新的文献求助30
5秒前
小程同学完成签到 ,获得积分10
5秒前
boltos发布了新的文献求助10
5秒前
舒适灵完成签到,获得积分10
6秒前
lkjh完成签到,获得积分10
6秒前
冷静飞柏发布了新的文献求助10
7秒前
zlf完成签到,获得积分10
7秒前
李爱国应助晚星采纳,获得10
7秒前
大模型应助君君采纳,获得10
7秒前
丘比特应助君君采纳,获得10
7秒前
开心人达完成签到,获得积分10
7秒前
7秒前
雪白的千雁完成签到 ,获得积分10
8秒前
8秒前
9秒前
冷静太君完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
pineapple yang完成签到,获得积分10
10秒前
qweasdzxcqwe发布了新的文献求助10
10秒前
namin完成签到,获得积分10
11秒前
rico完成签到,获得积分10
11秒前
顺顺安完成签到,获得积分10
11秒前
a水爱科研发布了新的文献求助10
12秒前
橙子才是唯一的水果完成签到,获得积分10
12秒前
hongw_liu完成签到,获得积分10
12秒前
烩面大师发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600