FL2DP: Privacy-Preserving Federated Learning Via Differential Privacy for Artificial IoT

差别隐私 计算机科学 上传 洗牌 身份(音乐) 噪音(视频) 人为噪声 方案(数学) 信息隐私 理论计算机科学 计算机安全 人工智能 数据挖掘 计算机网络 数学 万维网 数学分析 频道(广播) 物理 发射机 声学 图像(数学) 程序设计语言
作者
Chen Gu,Xuande Cui,Xiaoling Zhu,Donghui Hu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 5100-5111 被引量:7
标识
DOI:10.1109/tii.2023.3331726
摘要

Federated learning (FL) is a promising paradigm for collaboratively training networks on distributed clients while retaining data locally. Recent work has shown that personal data can be recovered even though clients only send gradients to the server. To against the gradient leakage issue, differential privacy (DP)-based solutions are proposed to protect data privacy by adding noise to the gradient before sending it to the server. However, the introduced noise affects the training efficiency of local clients, resulting in low model accuracy. Moreover, the identity privacy of clients has not been seriously considered in FL. In this article, we propose FL2DP, a privacy-preserving scheme focusing on protecting the data privacy as well as the identity privacy of clients. Different from the current schemes that add noise sampled from the Gaussian or Laplace distribution, in our scheme the noise is added to the gradient based on the exponential mechanism to achieve high training efficiency. Then, clients upload the perturbed gradients to a shuffler, which reassigns these gradients with different identities. We give a formal privacy definition called gradient indistinguishability to provide strict unlinkability for gradients shuffle. We propose a new gradient shuffling mechanism by adapting the DP-based exponential mechanism to satisfy gradient indistinguishability using the designed utility function. In this case, an attacker cannot infer the real identity of the client via the shuffled gradient. We conduct extensive experiments on two real-world datasets, and the results demonstrate the effectiveness of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HeZheng发布了新的文献求助50
1秒前
butterflycat完成签到,获得积分10
1秒前
唐氏发布了新的文献求助10
1秒前
1秒前
1秒前
英子完成签到,获得积分10
2秒前
胡椰奶发布了新的文献求助10
2秒前
czz发布了新的文献求助10
2秒前
3秒前
励志小薛完成签到,获得积分20
3秒前
3秒前
Ava应助难得心亮采纳,获得10
3秒前
4秒前
4秒前
4秒前
羊羊发布了新的文献求助10
5秒前
sunyu发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
承诺信守发布了新的文献求助20
6秒前
miles驳回了烟花应助
7秒前
phoenix发布了新的文献求助10
7秒前
昭明发布了新的文献求助10
7秒前
8秒前
Otorhino发布了新的文献求助10
8秒前
jiuji发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
sunyu完成签到,获得积分10
11秒前
12秒前
幽月完成签到,获得积分10
12秒前
wu完成签到,获得积分10
13秒前
moon完成签到,获得积分20
14秒前
Meyako应助yjq采纳,获得20
14秒前
14秒前
15秒前
砼砼发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353776
求助须知:如何正确求助?哪些是违规求助? 4486351
关于积分的说明 13966218
捐赠科研通 4386702
什么是DOI,文献DOI怎么找? 2410022
邀请新用户注册赠送积分活动 1402355
关于科研通互助平台的介绍 1376132