FL2DP: Privacy-Preserving Federated Learning Via Differential Privacy for Artificial IoT

差别隐私 计算机科学 上传 洗牌 身份(音乐) 噪音(视频) 人为噪声 方案(数学) 信息隐私 理论计算机科学 计算机安全 人工智能 数据挖掘 计算机网络 数学 万维网 图像(数学) 程序设计语言 数学分析 频道(广播) 物理 发射机 声学
作者
Chen Gu,Xuande Cui,Xiaoling Zhu,Donghui Hu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:4
标识
DOI:10.1109/tii.2023.3331726
摘要

Federated learning (FL) is a promising paradigm for collaboratively training networks on distributed clients while retaining data locally. Recent work has shown that personal data can be recovered even though clients only send gradients to the server. To against the gradient leakage issue, differential privacy (DP)-based solutions are proposed to protect data privacy by adding noise to the gradient before sending it to the server. However, the introduced noise affects the training efficiency of local clients, resulting in low model accuracy. Moreover, the identity privacy of clients has not been seriously considered in FL. In this article, we propose FL2DP, a privacy-preserving scheme focusing on protecting the data privacy as well as the identity privacy of clients. Different from the current schemes that add noise sampled from the Gaussian or Laplace distribution, in our scheme the noise is added to the gradient based on the exponential mechanism to achieve high training efficiency. Then, clients upload the perturbed gradients to a shuffler, which reassigns these gradients with different identities. We give a formal privacy definition called gradient indistinguishability to provide strict unlinkability for gradients shuffle. We propose a new gradient shuffling mechanism by adapting the DP-based exponential mechanism to satisfy gradient indistinguishability using the designed utility function. In this case, an attacker cannot infer the real identity of the client via the shuffled gradient. We conduct extensive experiments on two real-world datasets, and the results demonstrate the effectiveness of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子完成签到,获得积分10
刚刚
zhzh0618发布了新的文献求助10
1秒前
解剖六楼那小哥完成签到 ,获得积分10
1秒前
1秒前
wddx完成签到,获得积分10
2秒前
我是老大应助欢喜愫采纳,获得10
2秒前
orchid完成签到,获得积分10
3秒前
3秒前
Lemon发布了新的文献求助10
5秒前
哈哈哈发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
小马甲应助山椒采纳,获得10
7秒前
自觉南风完成签到,获得积分10
7秒前
JamesPei应助不安的晓灵采纳,获得30
7秒前
从容荠完成签到,获得积分10
8秒前
酷波er应助积极访冬采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
几酌应助xixi采纳,获得10
11秒前
LQQ发布了新的文献求助10
11秒前
12秒前
Mzhao完成签到,获得积分10
12秒前
13秒前
一个呼呼发布了新的文献求助10
13秒前
13秒前
Kikisong完成签到,获得积分10
13秒前
13秒前
在水一方应助张张孟孟采纳,获得10
14秒前
酷酷煎饼发布了新的文献求助10
14秒前
沈小葵发布了新的文献求助10
15秒前
孤岛完成签到,获得积分10
16秒前
米歇尔发布了新的文献求助10
16秒前
大胆的小懒猪完成签到,获得积分10
16秒前
HHTTY完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567