A new approach to wavefront sensing: AI software with an autostigmatic microscope

泽尼克多项式 波前 计算机科学 波前传感器 软件 人工神经网络 人工智能 光学 自适应光学 参数统计 算法 计算机视觉 物理 数学 统计 程序设计语言
作者
Gaston Baudat,Robert E. Parks,Benjamin Anjakos
标识
DOI:10.1117/12.2676411
摘要

The use of artificial intelligence (AI) software for wavefront sensing has been demonstrated in previous studies. In this work, we have developed a novel approach to wavefront sensing by coupling an AI software with an Autostigmatic Microscope (AM). The resulting system offers optical component and system testing capabilities similar to those of an interferometer used in double pass, but with several advantages. The AM is smaller, lighter, and less expensive than commercially available interferometers, while the AI software is capable of reading out Zernike coefficients, providing real-time feedback for alignment. Our AI software uses an artificial neural network (NN) that is trained to output the Zernike coefficients, or any other relevant figures of merit, exclusively from synthetic data. The synthetic data includes random Zernike coefficients for a parametric description of the wavefront, noise, and a defocus error to avoid any stringent accuracy requirement. Once trained, the NN yields Zernike coefficients from a single frame of defocused intensity. The feedforward architecture of the NN enables swift output of Zernike coefficients, eliminating the need for iteration or optimization during run time. Using the software with an AM allows for paraxial alignment of the object in the test cavity, with the real-time Zernike coefficients guiding the item into optimal alignment. This double pass test is not possible with most other types of wavefront sensors, as they are designed for single-pass use. Our results demonstrate that the test results obtained compare well with modeled results, and that errors in the AM can be removed by calibration, as in the case of interferometer transmission spheres. Furthermore, the simple defocused image of a source provides non-ambiguous phase retrieval, which competes with traditional wavefront sensors such as Shack-Hartmann (SH) sensors or interferometers. The AI software provides high dynamic range, sensitivity and precision. This novel approach to wavefront sensing has significant potential for use in a wide range of applications in the field of optics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
ll应助馋酒的小猫采纳,获得10
2秒前
zho应助小禾一定行采纳,获得10
3秒前
lily发布了新的文献求助10
4秒前
小ki完成签到,获得积分10
4秒前
科研通AI5应助zzz采纳,获得10
5秒前
Hello应助蜡笔小新采纳,获得10
5秒前
ccc完成签到,获得积分10
6秒前
6秒前
上官若男应助高先春采纳,获得10
7秒前
8秒前
xiaozhou发布了新的文献求助10
8秒前
故意的从霜完成签到 ,获得积分10
8秒前
FashionBoy应助宋宋采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
SYLH应助aeyounrz采纳,获得10
12秒前
想跟这个世界讲个道理完成签到,获得积分10
12秒前
孟醒发布了新的文献求助10
14秒前
蓝橙发布了新的文献求助10
14秒前
Eric发布了新的文献求助10
14秒前
16秒前
俭朴映阳完成签到,获得积分10
16秒前
大方的小海豚完成签到,获得积分10
17秒前
18秒前
蔡宇逸完成签到,获得积分10
18秒前
亵渎完成签到,获得积分10
19秒前
20秒前
秦安完成签到,获得积分10
21秒前
fufu完成签到 ,获得积分10
21秒前
所所应助默listening采纳,获得10
21秒前
22秒前
共享精神应助英俊延恶采纳,获得10
22秒前
李健的小迷弟应助孙总采纳,获得10
23秒前
清秀代天发布了新的文献求助10
23秒前
大喜子发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972156
求助须知:如何正确求助?哪些是违规求助? 3516632
关于积分的说明 11183661
捐赠科研通 3251899
什么是DOI,文献DOI怎么找? 1796223
邀请新用户注册赠送积分活动 876264
科研通“疑难数据库(出版商)”最低求助积分说明 805436