A new approach to wavefront sensing: AI software with an autostigmatic microscope

泽尼克多项式 波前 计算机科学 波前传感器 软件 人工神经网络 人工智能 光学 自适应光学 参数统计 算法 计算机视觉 物理 数学 统计 程序设计语言
作者
Gaston Baudat,Robert E. Parks,Benjamin Anjakos
标识
DOI:10.1117/12.2676411
摘要

The use of artificial intelligence (AI) software for wavefront sensing has been demonstrated in previous studies. In this work, we have developed a novel approach to wavefront sensing by coupling an AI software with an Autostigmatic Microscope (AM). The resulting system offers optical component and system testing capabilities similar to those of an interferometer used in double pass, but with several advantages. The AM is smaller, lighter, and less expensive than commercially available interferometers, while the AI software is capable of reading out Zernike coefficients, providing real-time feedback for alignment. Our AI software uses an artificial neural network (NN) that is trained to output the Zernike coefficients, or any other relevant figures of merit, exclusively from synthetic data. The synthetic data includes random Zernike coefficients for a parametric description of the wavefront, noise, and a defocus error to avoid any stringent accuracy requirement. Once trained, the NN yields Zernike coefficients from a single frame of defocused intensity. The feedforward architecture of the NN enables swift output of Zernike coefficients, eliminating the need for iteration or optimization during run time. Using the software with an AM allows for paraxial alignment of the object in the test cavity, with the real-time Zernike coefficients guiding the item into optimal alignment. This double pass test is not possible with most other types of wavefront sensors, as they are designed for single-pass use. Our results demonstrate that the test results obtained compare well with modeled results, and that errors in the AM can be removed by calibration, as in the case of interferometer transmission spheres. Furthermore, the simple defocused image of a source provides non-ambiguous phase retrieval, which competes with traditional wavefront sensors such as Shack-Hartmann (SH) sensors or interferometers. The AI software provides high dynamic range, sensitivity and precision. This novel approach to wavefront sensing has significant potential for use in a wide range of applications in the field of optics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由香魔完成签到,获得积分10
1秒前
ding应助cc采纳,获得10
1秒前
1秒前
默默的问夏完成签到,获得积分10
1秒前
三颗板牙完成签到,获得积分10
2秒前
sun发布了新的文献求助10
2秒前
超级涔完成签到 ,获得积分10
2秒前
2秒前
3秒前
小辣里发布了新的文献求助10
3秒前
予安发布了新的文献求助10
3秒前
3秒前
3秒前
KingXing完成签到,获得积分10
4秒前
爆米花应助李梨采纳,获得10
4秒前
万能图书馆应助waa采纳,获得10
5秒前
小蘑菇应助喜笑颜开采纳,获得10
5秒前
昏睡的岂愈完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
英勇海完成签到 ,获得积分10
7秒前
Jasper应助景行行止采纳,获得10
8秒前
8秒前
Hu发布了新的文献求助10
8秒前
yili完成签到,获得积分20
9秒前
sunrise完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
自觉的盼芙完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556812
求助须知:如何正确求助?哪些是违规求助? 3132276
关于积分的说明 9396184
捐赠科研通 2832349
什么是DOI,文献DOI怎么找? 1556749
邀请新用户注册赠送积分活动 726893
科研通“疑难数据库(出版商)”最低求助积分说明 716131