已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CHEESE: Distributed Clustering-Based Hybrid Federated Split Learning Over Edge Networks

计算机科学 聚类分析 人工智能 情报检索
作者
Zhipeng Cheng,Xiaoyu Xia,Minghui Liwang,Xuwei Fan,Yanglong Sun,Xianbin Wang,Lianfen Huang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 3174-3191 被引量:6
标识
DOI:10.1109/tpds.2023.3322755
摘要

Federated learning (FL) and split learning (SL) have emerged as two promising distributed machine learning paradigms. However, implementing either FL or SL over clients with limited computation and communication resources often faces the challenge of achieving delay-efficient model training. To overcome this challenge, we propose a novel distributed C lustering-based H ybrid f E d E rated S plit l E arning ( CHEESE ) framework, consolidating distributed computation resources among clients by device-to-device (D2D) communications, which works in an intra-serial inter-parallel manner. In CHEESE , each learning client (LC) can form a learning cluster with its neighboring helping clients via D2D communications to train an FL model collaboratively. Specifically, inside each cluster, the model is split into multiple model segments via a model splitting and allocation (MSA) strategy, while each cluster member trains one segment. After completing intra-cluster training, a transmission client (TC) is determined from each cluster to upload a complete model to the base station for global model aggregation under allocated bandwidth. Based on this, an overall training delay cost minimization problem is formulated, which involves the following subproblems: client clustering, MSA, TC selection, and bandwidth allocation. Due to its NP-Hardness, the problem is decoupled and solved iteratively. The client clustering problem is first transformed into a distributed clustering game based on potential game theory, where each cluster further investigates the remaining three subproblems to evaluate the utility of each clustering strategy. Specifically, a heuristic algorithm is proposed to solve the MSA problem under a given clustering strategy, and a greedy-based convex optimization approach is introduced to solve the joint TC selection and bandwidth allocation problem. Finally, we propose an overall algorithm to tackle the joint problem iteratively, to reach a Nash equilibrium. Extensive experiments on practical models and datasets demonstrate that CHEESE can significantly reduce training delay costs, as compared with conventional FL and vanilla SL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8R60d8应助墨尘采纳,获得10
3秒前
英俊的铭应助墨尘采纳,获得10
3秒前
bbdd2334发布了新的文献求助10
4秒前
英吉利25发布了新的文献求助10
7秒前
8秒前
晓湫发布了新的文献求助10
9秒前
10秒前
李木子完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
博修发布了新的文献求助10
16秒前
indigo完成签到 ,获得积分10
19秒前
领导范儿应助望川采纳,获得10
19秒前
yydragen应助博修采纳,获得30
20秒前
21秒前
22秒前
22秒前
yx_cheng应助科研通管家采纳,获得30
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得30
24秒前
大模型应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
26秒前
晓湫发布了新的文献求助10
27秒前
27秒前
赘婿应助你好这位仁兄采纳,获得10
31秒前
James发布了新的文献求助10
34秒前
yzbbb发布了新的文献求助10
39秒前
JamesPei应助TMUEH_FCL采纳,获得30
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603