CHEESE: Distributed Clustering-Based Hybrid Federated Split Learning Over Edge Networks

计算机科学 聚类分析 人工智能 情报检索
作者
Zhipeng Cheng,Xiaoyu Xia,Minghui Liwang,Xuwei Fan,Yanglong Sun,Xianbin Wang,Lianfen Huang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 3174-3191 被引量:1
标识
DOI:10.1109/tpds.2023.3322755
摘要

Federated learning (FL) and split learning (SL) have emerged as two promising distributed machine learning paradigms. However, implementing either FL or SL over clients with limited computation and communication resources often faces the challenge of achieving delay-efficient model training. To overcome this challenge, we propose a novel distributed C lustering-based H ybrid f E d E rated S plit l E arning ( CHEESE ) framework, consolidating distributed computation resources among clients by device-to-device (D2D) communications, which works in an intra-serial inter-parallel manner. In CHEESE , each learning client (LC) can form a learning cluster with its neighboring helping clients via D2D communications to train an FL model collaboratively. Specifically, inside each cluster, the model is split into multiple model segments via a model splitting and allocation (MSA) strategy, while each cluster member trains one segment. After completing intra-cluster training, a transmission client (TC) is determined from each cluster to upload a complete model to the base station for global model aggregation under allocated bandwidth. Based on this, an overall training delay cost minimization problem is formulated, which involves the following subproblems: client clustering, MSA, TC selection, and bandwidth allocation. Due to its NP-Hardness, the problem is decoupled and solved iteratively. The client clustering problem is first transformed into a distributed clustering game based on potential game theory, where each cluster further investigates the remaining three subproblems to evaluate the utility of each clustering strategy. Specifically, a heuristic algorithm is proposed to solve the MSA problem under a given clustering strategy, and a greedy-based convex optimization approach is introduced to solve the joint TC selection and bandwidth allocation problem. Finally, we propose an overall algorithm to tackle the joint problem iteratively, to reach a Nash equilibrium. Extensive experiments on practical models and datasets demonstrate that CHEESE can significantly reduce training delay costs, as compared with conventional FL and vanilla SL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果粒儿完成签到 ,获得积分10
刚刚
大模型应助橙花采纳,获得10
1秒前
23333发布了新的文献求助10
3秒前
4秒前
Henry完成签到,获得积分10
4秒前
keyan123完成签到,获得积分10
4秒前
眼睛大的老虎完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
李健应助蓝歆采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
没有你不行完成签到,获得积分10
6秒前
HEIKU应助科研通管家采纳,获得20
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
23333完成签到,获得积分10
7秒前
7秒前
Alone离殇完成签到 ,获得积分10
8秒前
安东晨晨完成签到,获得积分10
8秒前
9秒前
WGOIST发布了新的文献求助10
9秒前
小h发布了新的文献求助10
9秒前
高高的冷之完成签到,获得积分10
10秒前
GT发布了新的文献求助10
10秒前
janejane发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011