CHEESE: Distributed Clustering-Based Hybrid Federated Split Learning Over Edge Networks

计算机科学 聚类分析 人工智能 情报检索
作者
Zhipeng Cheng,Xiaoyu Xia,Minghui Liwang,Xuwei Fan,Yanglong Sun,Xianbin Wang,Lianfen Huang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 3174-3191 被引量:6
标识
DOI:10.1109/tpds.2023.3322755
摘要

Federated learning (FL) and split learning (SL) have emerged as two promising distributed machine learning paradigms. However, implementing either FL or SL over clients with limited computation and communication resources often faces the challenge of achieving delay-efficient model training. To overcome this challenge, we propose a novel distributed C lustering-based H ybrid f E d E rated S plit l E arning ( CHEESE ) framework, consolidating distributed computation resources among clients by device-to-device (D2D) communications, which works in an intra-serial inter-parallel manner. In CHEESE , each learning client (LC) can form a learning cluster with its neighboring helping clients via D2D communications to train an FL model collaboratively. Specifically, inside each cluster, the model is split into multiple model segments via a model splitting and allocation (MSA) strategy, while each cluster member trains one segment. After completing intra-cluster training, a transmission client (TC) is determined from each cluster to upload a complete model to the base station for global model aggregation under allocated bandwidth. Based on this, an overall training delay cost minimization problem is formulated, which involves the following subproblems: client clustering, MSA, TC selection, and bandwidth allocation. Due to its NP-Hardness, the problem is decoupled and solved iteratively. The client clustering problem is first transformed into a distributed clustering game based on potential game theory, where each cluster further investigates the remaining three subproblems to evaluate the utility of each clustering strategy. Specifically, a heuristic algorithm is proposed to solve the MSA problem under a given clustering strategy, and a greedy-based convex optimization approach is introduced to solve the joint TC selection and bandwidth allocation problem. Finally, we propose an overall algorithm to tackle the joint problem iteratively, to reach a Nash equilibrium. Extensive experiments on practical models and datasets demonstrate that CHEESE can significantly reduce training delay costs, as compared with conventional FL and vanilla SL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chi发布了新的文献求助10
1秒前
3秒前
老迟到的威完成签到,获得积分10
3秒前
ding应助刘利文采纳,获得10
3秒前
3秒前
筱奇完成签到,获得积分10
3秒前
4秒前
Hello应助AAAA采纳,获得10
4秒前
5秒前
6秒前
知返发布了新的文献求助10
7秒前
陈同学发布了新的文献求助10
7秒前
赘婿应助小马采纳,获得10
7秒前
kkk发布了新的文献求助10
7秒前
ding应助杨梦珺采纳,获得10
7秒前
乐乐应助wsh12113采纳,获得10
8秒前
沁雪完成签到 ,获得积分20
9秒前
CornellRong发布了新的文献求助10
9秒前
fzzzzlucy发布了新的文献求助10
9秒前
子车茗应助喜乐采纳,获得30
9秒前
LYQ完成签到 ,获得积分10
10秒前
JJ完成签到,获得积分10
10秒前
iea完成签到 ,获得积分10
11秒前
糍粑鱼完成签到,获得积分10
11秒前
12秒前
12秒前
天天快乐应助独特的舞仙采纳,获得10
13秒前
CipherSage应助孙子豪采纳,获得10
14秒前
wsh12113完成签到,获得积分10
14秒前
沁雪关注了科研通微信公众号
14秒前
艾查恩完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
18秒前
19秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
20秒前
LR完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017581
求助须知:如何正确求助?哪些是违规求助? 4257160
关于积分的说明 13267994
捐赠科研通 4061491
什么是DOI,文献DOI怎么找? 2221358
邀请新用户注册赠送积分活动 1230610
关于科研通互助平台的介绍 1153234