SOCF: A correlation filter for real-time UAV tracking based on spatial disturbance suppression and object saliency-aware

人工智能 计算机科学 计算机视觉 视频跟踪 判别式 对象(语法) 跟踪(教育) 滤波器(信号处理) 目标检测 模式识别(心理学) 构造(python库) 心理学 教育学 程序设计语言
作者
Sugang Ma,Bo Zhao,Zhiqiang Hou,Wangsheng Yu,Lei Pu,Xiaobao Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122131-122131 被引量:7
标识
DOI:10.1016/j.eswa.2023.122131
摘要

The discriminative correlation filter (DCF) is commonly used in aerial object tracking due to its high tracking accuracy and computing speed. However, when similar object disturbances emerge in the background, the response map will generate sub-peaks, which may eventually lead to tracking failure. Meanwhile, the lack of attention to the tracked object can also cause tracking performance degradation. To these concerns, this paper proposes a novel correlation filter algorithm for real-time aerial tracking based on spatial disturbance suppression and object saliency-aware, i.e., SOCF. Firstly, this paper designs a novel spatial disturbance suppression strategy. Using the temporal information in the historical response maps, we construct a context response map, deviating it from the current response map to detect disturbance information in the background. Then, construct a spatial interference map, divide it into n×n non-overlapping regions, and suppress the negative samples in the disturbance region within the main regression. Furthermore, an object saliency-aware strategy is proposed, using a saliency detection algorithm to calculate the object-aware mask and multiplying it with the detection filter to obtain the object-aware filter. By constructing the object-aware regularization in the training phase, the trained detection filter focuses more on the object itself and can effectively separate the object from the background. Extensive experiments on four widely used unmanned aerial vehicle (UAV) datasets demonstrate that the proposed SOCF tracker achieves high tracking performance. Meanwhile, our tracker can maintain real-time aerial tracking at 48 FPS on a single CPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
halo发布了新的文献求助10
刚刚
1秒前
欢呼煎蛋完成签到,获得积分10
1秒前
科研通AI2S应助丁丁丁采纳,获得10
2秒前
3秒前
3秒前
血茗完成签到 ,获得积分10
4秒前
4秒前
伊倾完成签到,获得积分10
5秒前
6秒前
yw发布了新的文献求助10
7秒前
沐阳完成签到,获得积分10
9秒前
9秒前
口口发布了新的文献求助10
9秒前
DXY发布了新的文献求助10
9秒前
汉堡包应助Raul采纳,获得10
9秒前
10秒前
10秒前
领导范儿应助愤怒的水壶采纳,获得10
10秒前
景辣条应助hala采纳,获得10
12秒前
Antares发布了新的文献求助10
13秒前
超级的飞飞完成签到,获得积分10
13秒前
13秒前
小羊发布了新的文献求助10
15秒前
15秒前
丢丢发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
科研通AI2S应助笨笨的怜雪采纳,获得10
19秒前
小蘑菇应助jiajia采纳,获得10
19秒前
20秒前
圆润润呐发布了新的文献求助10
20秒前
21秒前
沐阳发布了新的文献求助10
21秒前
琉璃苣发布了新的文献求助10
21秒前
22秒前
Z小姐完成签到 ,获得积分10
22秒前
Lucas应助小羊采纳,获得10
22秒前
轻舟发布了新的文献求助10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136781
求助须知:如何正确求助?哪些是违规求助? 2787825
关于积分的说明 7783217
捐赠科研通 2443872
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954