SOCF: A correlation filter for real-time UAV tracking based on spatial disturbance suppression and object saliency-aware

人工智能 计算机科学 计算机视觉 视频跟踪 判别式 对象(语法) 跟踪(教育) 滤波器(信号处理) 目标检测 模式识别(心理学) 构造(python库) 心理学 教育学 程序设计语言
作者
Sugang Ma,Bo Zhao,Zhiqiang Hou,Wangsheng Yu,Lei Pu,Xiaobao Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122131-122131 被引量:7
标识
DOI:10.1016/j.eswa.2023.122131
摘要

The discriminative correlation filter (DCF) is commonly used in aerial object tracking due to its high tracking accuracy and computing speed. However, when similar object disturbances emerge in the background, the response map will generate sub-peaks, which may eventually lead to tracking failure. Meanwhile, the lack of attention to the tracked object can also cause tracking performance degradation. To these concerns, this paper proposes a novel correlation filter algorithm for real-time aerial tracking based on spatial disturbance suppression and object saliency-aware, i.e., SOCF. Firstly, this paper designs a novel spatial disturbance suppression strategy. Using the temporal information in the historical response maps, we construct a context response map, deviating it from the current response map to detect disturbance information in the background. Then, construct a spatial interference map, divide it into n×n non-overlapping regions, and suppress the negative samples in the disturbance region within the main regression. Furthermore, an object saliency-aware strategy is proposed, using a saliency detection algorithm to calculate the object-aware mask and multiplying it with the detection filter to obtain the object-aware filter. By constructing the object-aware regularization in the training phase, the trained detection filter focuses more on the object itself and can effectively separate the object from the background. Extensive experiments on four widely used unmanned aerial vehicle (UAV) datasets demonstrate that the proposed SOCF tracker achieves high tracking performance. Meanwhile, our tracker can maintain real-time aerial tracking at 48 FPS on a single CPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈丫发布了新的文献求助10
刚刚
刚刚
刚刚
小二郎应助凉风有信9527采纳,获得10
1秒前
LEMON发布了新的文献求助20
2秒前
炜大的我完成签到,获得积分10
2秒前
haimianbaobao发布了新的文献求助10
2秒前
传奇3应助研友_nPoXoL采纳,获得10
2秒前
lpp完成签到,获得积分10
2秒前
2秒前
ww发布了新的文献求助10
2秒前
22发布了新的文献求助10
3秒前
zhui发布了新的文献求助10
3秒前
4秒前
Jenny应助哈哈哈哈采纳,获得10
5秒前
笨笨芯应助Miracle采纳,获得10
5秒前
研友_LJGpan完成签到,获得积分10
5秒前
xiaozhenA完成签到,获得积分10
5秒前
junzilan发布了新的文献求助10
5秒前
云澈发布了新的文献求助10
5秒前
Hello paper发布了新的文献求助20
6秒前
a111完成签到,获得积分10
6秒前
乐乐应助zzznznnn采纳,获得10
6秒前
哈哈完成签到,获得积分20
7秒前
阳光衣完成签到,获得积分0
7秒前
9秒前
苏兴龙关注了科研通微信公众号
9秒前
9秒前
脑洞疼应助谦让的含海采纳,获得10
9秒前
华华发布了新的文献求助10
9秒前
9秒前
Orange应助命运的X号采纳,获得10
9秒前
云澈完成签到,获得积分10
11秒前
风趣的觅山完成签到,获得积分10
11秒前
打打应助SCI采纳,获得50
11秒前
pinging应助Wang采纳,获得10
11秒前
11秒前
灵巧荆发布了新的文献求助10
12秒前
和谐续完成签到 ,获得积分10
12秒前
李健应助是天使呢采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794