SOCF: A correlation filter for real-time UAV tracking based on spatial disturbance suppression and object saliency-aware

人工智能 计算机科学 计算机视觉 视频跟踪 判别式 对象(语法) 跟踪(教育) 滤波器(信号处理) 目标检测 模式识别(心理学) 构造(python库) 心理学 教育学 程序设计语言
作者
Sugang Ma,Bo Zhao,Zhiqiang Hou,Wangsheng Yu,Lei Pu,Xiaobao Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122131-122131 被引量:7
标识
DOI:10.1016/j.eswa.2023.122131
摘要

The discriminative correlation filter (DCF) is commonly used in aerial object tracking due to its high tracking accuracy and computing speed. However, when similar object disturbances emerge in the background, the response map will generate sub-peaks, which may eventually lead to tracking failure. Meanwhile, the lack of attention to the tracked object can also cause tracking performance degradation. To these concerns, this paper proposes a novel correlation filter algorithm for real-time aerial tracking based on spatial disturbance suppression and object saliency-aware, i.e., SOCF. Firstly, this paper designs a novel spatial disturbance suppression strategy. Using the temporal information in the historical response maps, we construct a context response map, deviating it from the current response map to detect disturbance information in the background. Then, construct a spatial interference map, divide it into n×n non-overlapping regions, and suppress the negative samples in the disturbance region within the main regression. Furthermore, an object saliency-aware strategy is proposed, using a saliency detection algorithm to calculate the object-aware mask and multiplying it with the detection filter to obtain the object-aware filter. By constructing the object-aware regularization in the training phase, the trained detection filter focuses more on the object itself and can effectively separate the object from the background. Extensive experiments on four widely used unmanned aerial vehicle (UAV) datasets demonstrate that the proposed SOCF tracker achieves high tracking performance. Meanwhile, our tracker can maintain real-time aerial tracking at 48 FPS on a single CPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助缓慢怜翠采纳,获得10
刚刚
功不唐捐发布了新的文献求助10
刚刚
jackten发布了新的文献求助10
刚刚
eghiefefe发布了新的文献求助150
1秒前
changping应助yzx采纳,获得10
1秒前
圣迭戈发布了新的文献求助10
2秒前
3D完成签到,获得积分10
2秒前
季咸鱼完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
风扇没有电完成签到,获得积分10
7秒前
甜羊羊发布了新的文献求助10
8秒前
sxmt123456789发布了新的文献求助30
8秒前
8秒前
ceeray23发布了新的文献求助20
8秒前
田様应助临澈采纳,获得10
9秒前
ZQP发布了新的文献求助10
9秒前
大个应助愉快的语山采纳,获得10
12秒前
ZQP完成签到,获得积分10
14秒前
xyhua925完成签到,获得积分10
14秒前
14秒前
功不唐捐完成签到,获得积分10
14秒前
caoyuya123完成签到 ,获得积分10
14秒前
iehaoang完成签到 ,获得积分10
16秒前
领导范儿应助Mn采纳,获得10
16秒前
17秒前
17秒前
小陈呀完成签到 ,获得积分10
18秒前
18秒前
桐桐应助清脆的夜白采纳,获得10
20秒前
CodeCraft应助无隅采纳,获得10
22秒前
xixilulixiu完成签到 ,获得积分10
23秒前
23秒前
木子木子李完成签到,获得积分10
26秒前
丘比特应助小江不饿采纳,获得10
27秒前
changping应助jackten采纳,获得10
28秒前
ep_bhw发布了新的文献求助10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265